The Symbolic Method for 2-SAT

Élie de Panafieu ${ }^{\text {a }}$ Sergey Dovgal ${ }^{\text {b }}$ Vlady Ravelomanana ${ }^{\text {c }}$
${ }^{a}$ Bell Labs, Nokia
${ }^{\mathrm{b}}$ LaBRI, Université de Bordeaux
${ }^{c}$ IRIF, Université de Paris
Journées ALEA, 18/03/2021 (online)

Exhibition result

Theorem. Let $S_{n, m}$ be the number of satisfiable 2-CNF with n Boolean literals and m clauses. Then,

$$
\ddot{S}(z, w)=\left[\sqrt{G(z, w) \odot_{z} \frac{1}{G(2 z, w)}} \odot_{z} \ddot{\operatorname{Se}} t(z, w)\right] G\left(\frac{2 z}{1+w}, w\right)
$$

where

- $\ddot{S}(z, w):=\sum_{n=0}^{\infty} \sum_{m=0}^{2 n(n-1)} S_{n, m} \frac{w^{m}}{(1+w)^{n^{2}}} \frac{z^{n}}{n!}$
- $\ddot{\operatorname{Set}}(z, w):=\sum_{n=0}^{\infty} \frac{1}{(1+w)^{n^{2}}} \frac{z^{n}}{n!}$
- $G(z, w):=\sum_{n=0}^{\infty}(1+w)^{\binom{n}{2} \frac{n^{n}}{n!} \text { is the EGF of all simple graphs }}$
- \odot_{z} is the exponential Hadamard product

$$
\left(\sum_{n=0}^{\infty} a_{n}(\mathrm{w}) \frac{z^{n}}{n!}\right) \odot_{z}\left(\sum_{n=0}^{\infty} b_{n}(\mathrm{w}) \frac{z^{n}}{n!}\right):=\sum_{n=0}^{\infty} a_{n}(\mathrm{w}) b_{n}(\mathrm{w}) \frac{z^{n}}{n!} .
$$

Part I. Back to the origin: generating functions

The cartesian product

$$
\left(a_{0}+a_{1} \frac{z}{1!}+a_{2} \frac{z^{2}}{2!}+\ldots\right)\left(b_{0}+b_{1} \frac{z}{1!}+b_{2} \frac{z^{2}}{2!}+\ldots\right)=c_{0}+c_{1} \frac{z}{1!}+c_{2} \frac{z^{2}}{2!}+\ldots
$$

The convolution rule corresponding to EGF:

$$
c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k}
$$

Directed graphs and their components

Components ad,
(c) and do are strongly-connected components.

- Components ac and do are source-like components
- Component is a sink-like component

The arrow product

The arrow product convolution rule

$$
\text { Let } a_{n}=a_{n}(w), b_{n}=b_{n}(w), c_{n}=c_{n}(w)
$$

$$
\left(\sum_{n=0}^{\infty} a_{n} \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} b_{n} \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^{n}}{n!}\right)=\sum_{n=0}^{\infty} c_{n} \frac{1}{(1+w)^{\binom{n}{2}} \frac{z^{n}}{n!}}
$$

The convolution rule corresponding to Graphic GF:

$$
c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k}(1+w)^{k(n-k)}
$$

Conversion between Exponential GF and Graphic GF

$$
\widehat{A}(z, w)=\sum_{n=0}^{\infty} a_{n}(w) \frac{1}{(1+w)^{\binom{2}{2}} \frac{z^{n}}{n!}} \quad \quad A(z, w)=\sum_{n=0}^{\infty} a_{n}(w) \frac{z^{n}}{n!}
$$

- Exponential Hadamard product:

$$
\left(\sum_{n \geqslant 0} a_{n}(\mathrm{w}) \frac{z^{n}}{n!}\right) \odot_{z}\left(\sum_{n \geqslant 0} b_{n}(\mathrm{w}) \frac{z^{n}}{n!}\right):=\sum_{n \geqslant 0} a_{n}(\mathrm{w}) b_{n}(\mathrm{w}) \frac{z^{n}}{n!}
$$

- Exponential GF for graphs, Graphic GF for sets:

$$
G(z, w)=\sum_{n \geqslant 0}(1+w)^{\binom{n}{2}} \frac{z^{n}}{n!}, \quad \widehat{\operatorname{Set}}(z, w)=\sum_{n \geqslant 0} \frac{1}{(1+w)^{\binom{n}{2}} \frac{z^{n}}{n!}, ~, ~, ~}
$$

- Conversion formulas:

$$
A(z, w)=G(z, w) \odot_{z} \widehat{A}(z, w)
$$

$$
\widehat{A}(z, w)=\widehat{\operatorname{Set}}(z, w) \odot_{z} A(z, w)
$$

P.S. Analytic conversion principle (Graphic \leftrightarrow Exponential)

 e.g. [Flajolet, Salvy, Schaffer '2004] and other works on the exponents of quadratic forms$$
\widehat{A}(z, w)=\sum_{n=0}^{\infty} a_{n}(\mathrm{w}) \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^{n}}{n!}, \quad A(z, w)=\sum_{n=0}^{\infty} a_{n}(\mathrm{w}) \frac{z^{n}}{n!}
$$

- Fourier integral:

$$
e^{-t^{2} / 2}=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{i x t} e^{-x^{2} / 2} d x
$$

- Exponential to Graphic:

$$
\widehat{A}(z, w)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} A\left(z \sqrt{1+w} e^{i x \sqrt{\log (1+w)}}, w\right) e^{-x^{2} / 2} d x
$$

Knowing that such a conversion exists is an important step for refined asymptotic analysis in the future. We have already used it in [de Panafieu, D., Ralaivaosaona, Rasendrahasina, Wagner '2021+]. https://arxiv.org/abs/2009.12127

Part II. Families of directed graphs

Main enumeration theorem

[Liskovets, Robinson, Gessel, Wright et. al. '1970's] [de Panafieu, D. '2019]
Theorem (rediscovery of the results from '1970s)

- Graphic GF for digraphs with strongly connected components from given family $\mathcal{S C C}$ is

$$
\widehat{D}(z, w)=\frac{1}{e^{-\operatorname{SCC}(z, w)} \odot_{z} \widehat{\operatorname{Set}}(z, w)}
$$

where $\operatorname{SCC}(z, w)$ is the Exponential GF.
Compare with simple graphs (folklore)

- Exponential GF for graphs with connected components from given family \mathcal{C} is

$$
G(z, w)=e^{C(z, w)}=\frac{1}{e^{-C(z, w)}}
$$

Proof of the main enumeration theorem

- Let u mark source-like components in \mathcal{D}.
- \mathcal{D} with distinguished source-like components is an arrow product of a set of strong components and \mathcal{D}.

$$
\widehat{D}(z, w, u+1)=\left(e^{u \cdot \operatorname{scc}(z, w)} \odot_{z} \widehat{\operatorname{Set}}(z, w)\right) \cdot \widehat{D}(z, w, 1)
$$

- Set $u=-1$. Result follows: $\widehat{D}(z, w)=\frac{1}{e^{-\operatorname{SCC}(z, w)} \odot_{z} \widehat{\operatorname{Set}(z, w)}}$.

Corollary: strongly connected digraphs

[Liskovets, Robinson, Gessel, Wright et. al. '1970's] [de Panafieu, D. '2019]

Theorem
Exponential GF of strongly connected digraphs is

$$
\operatorname{SCC}(z, w)=-\log \left(G(z, w) \odot_{z} \frac{1}{G(z, w)}\right)
$$

Proof. Inversion of the main enumeration theorem

$$
G(z, w)=\widehat{D}(z, w)=\frac{1}{e^{-\operatorname{SCC}(z, w)} \odot_{z} \widehat{\operatorname{Set}}(z, w)}
$$

Graphic GF of all digraphs $\widehat{D}(z, w)$ equals the EGF of graphs $G(z, w)$.

Part III. Symbolic method for 2-CNF via implication digraphs

Implication digraphs

$$
\begin{cases}\neg x_{1} \vee \neg x_{2} & =1 \\ \neg x_{1} \vee x_{2} & =1 \\ x_{3} \vee x_{4} & =1 \\ x_{1} \vee \neg x_{3} & =1 \\ x_{3} \vee \neg x_{4} & =1\end{cases}
$$

Replace each clause $x \vee y$ with two implications $\bar{x} \rightarrow y$ and $\bar{y} \rightarrow x$.
Proposition (folklore / [Aspvall, Plass, Tarjan '82])
2-CNF is satisfiable if and only if there is no contradictory circuit.
The above $2-\mathrm{CNF}$ is not satisfiable

N.B. Each variable of a contradictory component belongs to a contradictory circuit.

Implication digraphs and their components

2-CNF implication digraph

(Contradictory)

- $x \bar{x}$ and $y \bar{y}$ are contradictory strongly connected
- a0 and bo are ordinary source-like
- ao and bo are ordinary sink-like
- © and © are ordinary isolated

The implication product

The implication product convolution rule

If \widehat{A} is Graphic GF and \ddot{B}, \ddot{C} are Implication GF then

$$
\left(\sum_{n=0}^{\infty} a_{n} \frac{2^{n}}{(1+w)^{(n+1} 2} \frac{z^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} b_{n} \frac{1}{(1+w)^{n^{2}}} \frac{z^{n}}{n!}\right)=\sum_{n=0}^{\infty} c_{n} \frac{1}{(1+w)^{n^{2}}} \frac{z^{n}}{n!}
$$

$$
\widehat{A}\left(\frac{2 z}{1+w}\right) \cdot \ddot{B}(z, w)=\ddot{C}(z, w)
$$

Combinatorial convolution rule corresponding to Implication GF:

$$
c_{n}=\sum_{k=0}^{n}\binom{n}{k} 2^{k} a_{k} b_{n-k}(1+w)^{k \cdot 2(n-k)+\binom{k}{2}}
$$

Main enumeration theorem for 2-CNF

Theorem ([de Panafieu, D., Ravelomanana '2021])

- Implication GF for implication digraphs with ordinary components from given SCC and contradictory components from given $\mathcal{C S C C}$ is

$$
\ddot{\operatorname{CN}} F_{2}(z, w)=\frac{e^{\operatorname{CSCC}(z, w)-\operatorname{scc}(2 z, w) / 2} \odot_{z} \ddot{\operatorname{Se}} t(z, w)}{e^{-\operatorname{scc}\left(\frac{2 z}{1+w}, w\right)} \odot_{z} \widehat{\operatorname{Set}}(z, w)}
$$

- where

Proof of the main enumeration theorem

- Let u mark ordinary source-like components in 2-CNF.
- Let v mark ordinary isolated components in 2-CNF (by pairs).
- Take implication product of set of ordinary components and 2-CNF.
- Add an arbitrary subset of ordinary isolated components. EGF of one pair of isolated components is $\operatorname{SCC}(2 z) / 2$.
- Now, every source-like component is marked by u or 1, and every ordinary isolated pair is marked by 2 u , v or 1 .

$$
\begin{aligned}
e g f\left[\mathrm{CNF}_{2}(z, \mathrm{u}\right. & +1,2 \mathrm{u}+\mathrm{v}+1)] \\
& =\operatorname{egf}\left[\left(e^{\mathrm{u} \cdot \operatorname{Scc}\left(\frac{2 z}{w+1}\right)} \bigodot_{z} \widehat{\operatorname{Set}(z)}\right) \operatorname{CNF}_{2}(z, 1,1)\right] \cdot e^{\mathrm{vSCC}(2 z) / 2}
\end{aligned}
$$

- Let $u=-1$. An implication digraph without source-like ordinary components is a disjoint set of contradictory and ordinary components.
- Complete with arithmetic transformations.

Two corollaries

Corollary 1 (inversion of the main theorem)

Exponential GF of contradictory strongly connected components is

$$
\operatorname{CSCC}(z, w)=\frac{1}{2} \operatorname{SCC}(2 z, w)+\log \left(\operatorname{BG}(z, w) \odot_{z}\left[\frac{\ddot{\mathrm{NF}}_{2}(z, w)}{G\left(\frac{2 z}{w+1}\right)}\right]\right)
$$

where $\mathrm{BG}(z)=\sum_{n=0}^{\infty}(1+w)^{n^{2}} \frac{z^{n}}{n!}$ is the EGF of bipartite graphs.
Corollary 2 (no contradictory components) Implication GF of satisfiable 2-CNF is

$$
\ddot{S}(z, w)=\left[\sqrt{G(z, w) \odot_{z} \frac{1}{G(2 z, w)}} \odot_{z} \ddot{\operatorname{Set}}(z, w)\right] G\left(\frac{2 z}{1+w}, w\right) .
$$

Summary

Discussed today

1. New symbolic method for 2-CNF with given strong and contradictory components: Implication GF and friends
2. Satisfiable 2-CNF: particular case with $\operatorname{CSCC}(z, w)=0$.
3. Exponential GF for Contradictory SCC

Behind the scenes

- 2-CNF with marked source-like SCC, isolated SCC and contradictory SCC
- Multi-2-CNF (with loops and multiple clauses) yield simpler expressions
- Asymptotic analysis of divergent series (Fourier and friends)

This talk is dedicated to the memory of Philippe Flajolet and to the strongly connected people of contradictory Belarus

Thank you for your attention.

