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Exhibition result

Theorem. Let Sn,m be the number of satisfiable 2-CNF
with n Boolean literals and m clauses. Then,

S̈(z,w) =

[√
G(z,w)⊙z

1

G(2z,w)
⊙z S̈et(z,w)

]
G
(

2z
1+w ,w

)
where

▶ S̈(z,w) :=
∞∑
n=0

2n(n−1)∑
m=0

Sn,m
wm

(1 + w)n2
zn

n!

▶ S̈et(z,w) :=
∞∑
n=0

1

(1 + w)n2
zn

n!

▶ G(z,w) :=
∞∑
n=0

(1 + w)(
n
2
) zn

n! is the EGF of all simple graphs

▶ ⊙z is the exponential Hadamard product(∑∞
n=0 an(w)

zn

n!

)
⊙z

(∑∞
n=0 bn(w)

zn

n!

)
:=

∑∞
n=0 an(w)bn(w)

zn

n! .
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Part I. Back to the origin: generating functions
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The cartesian product

(
a0 + a1

z
1!

+ a2
z2

2!
+ . . .

)(
b0 + b1

z
1!

+ b2
z2

2!
+ . . .

)
= c0 + c1

z
1!

+ c2
z2

2!
+ . . .

The convolution rule corresponding to EGF:

cn =
n∑

k=0

(
n
k

)
akbn−k
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Directed graphs and their components

a⟳

b⟳

c⟳ d⟳

▶ Components a⟳ , b⟳ ,

c⟳ and d⟳ are
strongly-connected
components.

▶ Components a⟳ and d⟳
are source-like components

▶ Component c⟳ is a
sink-like component
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The arrow product
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The arrow product convolution rule

Let an = an(w), bn = bn(w), cn = cn(w),( ∞∑
n=0

an
1

(1 + w)(
n
2
)

zn

n!

)( ∞∑
n=0

bn
1

(1 + w)(
n
2
)

zn

n!

)
=

∞∑
n=0

cn
1

(1 + w)(
n
2
)

zn

n!

The convolution rule corresponding to Graphic GF:

cn =
n∑

k=0

(
n
k

)
akbn−k(1 + w)k(n−k)
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Conversion between Exponential GF and Graphic GF

Â(z,w) =
∞∑
n=0

an(w)
1

(1 + w)(
n
2
)

zn

n!
, A(z,w) =

∞∑
n=0

an(w)
zn

n!

▶ Exponential Hadamard product:(∑
n⩾0

an(w)
zn

n!

)
⊙z

(∑
n⩾0

bn(w)
zn

n!

)
:=

∑
n⩾0

an(w)bn(w)
zn

n!

▶ Exponential GF for graphs, Graphic GF for sets:

G(z,w) =
∑
n⩾0

(1 + w)(
n
2)
zn

n!
, Ŝet(z,w) =

∑
n⩾0

1

(1 + w)(
n
2)

zn

n!
,

▶ Conversion formulas:

A(z,w) = G(z,w)⊙z Â(z,w) Â(z,w) = Ŝet(z,w)⊙z A(z,w)
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P.S. Analytic conversion principle (Graphic↔ Exponential)
e.g. [Flajolet, Salvy, Schaffer ’2004] and other works on the exponents of quadratic forms

Â(z,w) =
∞∑
n=0

an(w)
1

(1 + w)(
n
2
)

zn

n!
, A(z,w) =

∞∑
n=0

an(w)
zn

n!

▶ Fourier integral:

e−t2/2 =
1√
2π

∫
R
eixte−x2/2dx.

▶ Exponential to Graphic:

Â(z,w) =
1√
2π

∫
R
A
(
z
√
1 + w eix

√
log(1+w),w

)
e−x2/2dx.

Knowing that such a conversion exists is an important step for
refined asymptotic analysis in the future. We have already used it
in [de Panafieu, D., Ralaivaosaona, Rasendrahasina, Wagner ’2021+].

https://arxiv.org/abs/2009.12127

https://arxiv.org/abs/2009.12127


10/23

Part II. Families of directed graphs
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Main enumeration theorem
[Liskovets, Robinson, Gessel, Wright et. al. ’1970’s] [de Panafieu, D. ’2019]

Theorem (rediscovery of the results from ’1970s)

▶ Graphic GF for digraphs with strongly connected components
from given family SCC is

D̂(z,w) =
1

e−SCC(z,w) ⊙z Ŝet(z,w)

where SCC(z,w) is the Exponential GF.

Compare with simple graphs (folklore)

▶ Exponential GF for graphs with connected components from
given family C is

G(z,w) = eC(z,w) =
1

e−C(z,w)
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Proof of the main enumeration theorem

▶ Let u mark source-like components in D.
▶ D with distinguished source-like components is an arrow

product of a set of strong components and D.

D̂(z,w, u+ 1) =
(
eu·SCC(z,w) ⊙z Ŝet(z,w)

)
· D̂(z,w, 1).

are distinguished source-like

are other source-like components.

▶ Set u = −1. Result follows: D̂(z,w) =
1

e−SCC(z,w) ⊙z Ŝet(z,w)
.
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Corollary: strongly connected digraphs
[Liskovets, Robinson, Gessel, Wright et. al. ’1970’s] [de Panafieu, D. ’2019]

Theorem
Exponential GF of strongly connected digraphs is

SCC(z,w) = − log
(
G(z,w)⊙z

1

G(z,w)

)

Proof. Inversion of the main enumeration theorem

G(z,w) = D̂(z,w) =
1

e−SCC(z,w) ⊙z Ŝet(z,w)

Graphic GF of all digraphs D̂(z,w) equals the EGF of graphs G(z,w).
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Part III. Symbolic method for 2-CNF via implication digraphs
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Implication digraphs


¬x1 ∨ ¬x2 = 1

¬x1 ∨ x2 = 1

x3 ∨ x4 = 1

x1 ∨ ¬x3 = 1

x3 ∨ ¬x4 = 1

1

2

3

4

1

2

3

4
Replace each clause x ∨ y with two implications x → y and y → x.

Proposition (folklore / [Aspvall, Plass, Tarjan ’82])
2-CNF is satisfiable if and only if there is no contradictory circuit.

The above 2-CNF is not satisfiable

1 −→ 2 −→ 1 −→ 3 −→ 4 −→ 3 −→ 1

N.B. Each variable of a contradictory component belongs to a contradictory circuit.
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Implication digraphs and their components

a⟳

a⟳

xx yy

b⟳

b⟳

c⟳

c⟳

2-CNF implication digraph

1

2

3

(Ordinary)

1

2

3

4

1

2

3

4

(Contradictory)

▶ xx and yy are contradictory strongly connected

▶ a⟳ and b⟳ are ordinary source-like

▶ a⟳ and b⟳ are ordinary sink-like

▶ c⟳ and c⟳ are ordinary isolated
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The implication product

x

y

z

t a

b

c

a

b

c

x
y

z
t

L(D) F ∈ I R(D)
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The implication product convolution rule
If Â is Graphic GF and B̈, C̈ are Implication GF then( ∞∑

n=0

an
2n

(1 + w)(
n+1
2
)

zn

n!

)( ∞∑
n=0

bn
1

(1 + w)n2
zn

n!

)
=

∞∑
n=0

cn
1

(1 + w)n2
zn

n!

Â
(

2z
1+w

)
· B̈(z,w) = C̈(z,w)

x

y

z

t a

b

c

a

b

c

x
y

z
t

L(D) F ∈ I R(D)

Combinatorial convolution rule corresponding to Implication GF:

cn =
n∑

k=0

(
n
k

)
2kakbn−k(1 + w)k·2(n−k)+(k

2
)
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Main enumeration theorem for 2-CNF

Theorem ([de Panafieu, D., Ravelomanana ’2021])

▶ Implication GF for implication digraphs
with ordinary components from given SCC
and contradictory components from given CSCC is

¨CNF2(z,w) =
eCSCC(z,w)−SCC(2z,w)/2 ⊙z S̈et(z,w)

e−SCC
(

2z
1+w ,w

)
⊙z Ŝet(z,w)

▶ where

Ŝet(z,w) =
∑
n⩾0

1

(1 + w)(
n
2
)

zn

n!
, S̈et(z,w) =

∑
n⩾0

1

(1 + w)n2
zn

n!
.
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Proof of the main enumeration theorem

▶ Let u mark ordinary source-like components in 2-CNF.

▶ Let v mark ordinary isolated components in 2-CNF (by pairs).

▶ Take implication product of set of ordinary components and 2-CNF.

▶ Add an arbitrary subset of ordinary isolated components. EGF of one pair of
isolated components is SCC(2z)/2.

▶ Now, every source-like component is marked by u or 1, and every ordinary
isolated pair is marked by 2u, v or 1.

egf[ ¨CNF2(z, u+ 1, 2u+ v+ 1)]

= egf
[(
eu·SCC

(
2z

w+1

)
⊙z Ŝet(z)

)
¨CNF2(z, 1, 1)

]
· evSCC(2z)/2

▶ Let u = −1. An implication digraph without source-like ordinary
components is a disjoint set of contradictory and ordinary
components.

▶ Complete with arithmetic transformations.



21/23

Two corollaries

Corollary 1 (inversion of the main theorem)
Exponential GF of contradictory strongly connected components is

CSCC(z,w) = 1

2
SCC(2z,w) + log

BG(z,w)⊙z

 ¨CNF2(z,w)
G
(

2z
w+1

)


where BG(z) =
∑∞

n=0(1 + w)n
2 zn

n!
is the EGF of bipartite graphs.

Corollary 2 (no contradictory components)
Implication GF of satisfiable 2-CNF is

S̈(z,w) =

[√
G(z,w)⊙z

1

G(2z,w)
⊙z S̈et(z,w)

]
G
(

2z
1 + w

,w
)
.



22/23

Summary

Discussed today

1. New symbolic method for 2-CNF with given strong and
contradictory components: Implication GF and friends

2. Satisfiable 2-CNF: particular case with CSCC(z,w) = 0.

3. Exponential GF for Contradictory SCC

Behind the scenes
▶ 2-CNF with marked source-like SCC, isolated SCC and contradictory SCC

▶ Multi-2-CNF (with loops and multiple clauses) yield simpler expressions

▶ Asymptotic analysis of divergent series (Fourier and friends)
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This talk is dedicated to the memory of Philippe Flajolet

and to the strongly connected people of contradictory Belarus

Thank you for your attention.


