The Symbolic Method for 2-SAT

Élie de Panafieu ^a Sergey Dovgal ^b Vlady Ravelomanana ^c

^aBell Labs, Nokia

^bLaBRI, Université de Bordeaux

^cIRIF, Université de Paris

Journées ALEA, 18/03/2021 (online)

Exhibition result

Theorem. Let $S_{n,m}$ be the number of satisfiable 2-CNF with *n* Boolean literals and *m* clauses. Then,

$$\ddot{S}(z,w) = \left[\sqrt{G(z,w)\odot_z \frac{1}{G(2z,w)}}\odot_z \ddot{Set}(z,w)\right] G\left(\frac{2z}{1+w},w\right)$$

where

$$\begin{split} \ddot{S}(z,w) &:= \sum_{n=0}^{\infty} \sum_{m=0}^{2n(n-1)} S_{n,m} \frac{w^m}{(1+w)^{n^2}} \frac{z^n}{n!} \\ \ddot{Set}(z,w) &:= \sum_{n=0}^{\infty} \frac{1}{(1+w)^{n^2}} \frac{z^n}{n!} \\ \ddot{Set}(z,w) &:= \sum_{n=0}^{\infty} (1+w)^{\binom{n}{2}} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \ddot{Set}(z,w) &:= \sum_{n=0}^{\infty} (1+w)^{\binom{n}{2}} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{Set}(z,w) &:= \sum_{n=0}^{\infty} (1+w)^{\binom{n}{2}} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{Set}(z,w) &:= \sum_{n=0}^{\infty} (1+w)^{\binom{n}{2}} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{Set}(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{Set}(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{Set}(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{Set}(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{Set}(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{Set}(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{Set}(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{Set}(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n}{n!} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{Set}(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n$$

Part I. Back to the origin: generating functions

The cartesian product

$$\left(a_{0} + a_{1}\frac{z}{1!} + a_{2}\frac{z^{2}}{2!} + \dots\right)\left(b_{0} + b_{1}\frac{z}{1!} + b_{2}\frac{z^{2}}{2!} + \dots\right) = c_{0} + c_{1}\frac{z}{1!} + c_{2}\frac{z^{2}}{2!} + \dots$$

The convolution rule corresponding to EGF:

$$c_n = \sum_{k=0}^n \binom{n}{k} a_k b_{n-k}$$

Directed graphs and their components

The arrow product

The arrow product convolution rule

Let
$$a_n = a_n(w)$$
, $b_n = b_n(w)$, $c_n = c_n(w)$,

$$\left(\sum_{n=0}^{\infty} a_n \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^n}{n!}\right) \left(\sum_{n=0}^{\infty} b_n \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^n}{n!}\right) = \sum_{n=0}^{\infty} c_n \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^n}{n!}$$

The convolution rule corresponding to Graphic GF:

$$c_n = \sum_{k=0}^n \binom{n}{k} a_k b_{n-k} (1+w)^{k(n-k)}$$

Conversion between Exponential GF and Graphic GF

$$\widehat{A}(z,w) = \sum_{n=0}^{\infty} a_n(w) \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^n}{n!}, \quad A(z,w) = \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!}$$

Exponential Hadamard product:

$$\left(\sum_{n\geq 0}a_n(\mathsf{w})\frac{z^n}{n!}\right)\odot_z\left(\sum_{n\geq 0}b_n(\mathsf{w})\frac{z^n}{n!}\right):=\sum_{n\geq 0}a_n(\mathsf{w})b_n(\mathsf{w})\frac{z^n}{n!}$$

Exponential GF for graphs, Graphic GF for sets:

$$G(z,w) = \sum_{n \ge 0} (1+w)^{\binom{n}{2}} \frac{z^n}{n!}, \quad \widehat{Set}(z,w) = \sum_{n \ge 0} \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^n}{n!},$$

Conversion formulas:

$$A(z,w) = G(z,w) \odot_z \widehat{A}(z,w) \qquad \widehat{A}(z,w) = \widehat{Set}(z,w) \odot_z A(z,w)$$

P.S. Analytic conversion principle (Graphic \leftrightarrow Exponential)

e.g. [Flajolet, Salvy, Schaffer '2004] and other works on the exponents of quadratic forms

$$\widehat{A}(z, w) = \sum_{n=0}^{\infty} a_n(w) \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^n}{n!}, \quad A(z, w) = \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!}$$

Fourier integral:

$$e^{-t^2/2} = rac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ixt} e^{-x^2/2} dx.$$

Exponential to Graphic:

$$\widehat{A}(z,w) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} A\left(z\sqrt{1+w} \ e^{ix\sqrt{\log(1+w)}}, w\right) e^{-x^2/2} dx.$$

Knowing that such a conversion exists is an important step for refined asymptotic analysis in the future. We have already used it in [de Panafieu, D., Ralaivaosaona, Rasendrahasina, Wagner '2021+]. https://arxiv.org/abs/2009.12127 Part II. Families of directed graphs

Main enumeration theorem

[Liskovets, Robinson, Gessel, Wright et. al. '1970's] [de Panafieu, D. '2019]

Theorem (rediscovery of the results from '1970s)

 Graphic GF for digraphs with strongly connected components from given family SCC is

$$\widehat{D}(z, w) = \frac{1}{e^{-\mathrm{SCC}(z, w)} \odot_z \widehat{Set}(z, w)}$$

where SCC(z, w) is the Exponential GF.

Compare with simple graphs (folklore)

Exponential GF for graphs with connected components from given family C is

$$G(z,w) = e^{C(z,w)} = \frac{1}{e^{-C(z,w)}}$$

Proof of the main enumeration theorem

- ▶ Let u mark *source-like components* in *D*.
- D with *distinguished* source-like components is an **arrow product** of a *set* of strong components and D.

$$\widehat{D}(z, w, u + 1) = \left(e^{u \cdot \mathbf{SCC}(z, w)} \odot_z \widehat{Set}(z, w)\right) \cdot \widehat{D}(z, w, 1).$$

Corollary: strongly connected digraphs

[Liskovets, Robinson, Gessel, Wright et. al. '1970's] [de Panafieu, D. '2019]

Theorem Exponential GF of strongly connected digraphs is

$$\operatorname{SCC}(z, w) = -\log\left(G(z, w) \odot_z \frac{1}{G(z, w)}\right)$$

Proof. Inversion of the main enumeration theorem

$$G(z, w) = \widehat{D}(z, w) = \frac{1}{e^{-\operatorname{SCC}(z, w)} \odot_z \widehat{\operatorname{Set}}(z, w)}$$

Graphic GF of all digraphs $\widehat{D}(z, w)$ equals the EGF of graphs G(z, w).

Part III. Symbolic method for 2-CNF via implication digraphs

Implication digraphs

Replace each clause $x \lor y$ with two implications $\overline{x} \to y$ and $\overline{y} \to x$.

Proposition (folklore / [Aspvall, Plass, Tarjan '82])

2-CNF is satisfiable if and only if there is no contradictory circuit.

The above 2-CNF is not satisfiable

$$1 \longrightarrow \overline{2} \longrightarrow \overline{1} \longrightarrow \overline{3} \longrightarrow \overline{4} \longrightarrow \overline{3} \longrightarrow 1$$

N.B. Each variable of a contradictory component belongs to a contradictory circuit.

Implication digraphs and their components

The implication product

The implication product convolution rule If \hat{A} is Graphic GF and \ddot{B} , \ddot{C} are Implication GF then

Combinatorial convolution rule corresponding to Implication GF:

$$c_{n} = \sum_{k=0}^{n} {\binom{n}{k}} 2^{k} a_{k} b_{n-k} (1+w)^{k \cdot 2(n-k) + {\binom{k}{2}}}$$

Main enumeration theorem for 2-CNF

Theorem ([de Panafieu, D., Ravelomanana '2021])

Implication GF for implication digraphs with ordinary components from given SCC and contradictory components from given CSCC is

$$C\ddot{N}F_{2}(z,w) = \frac{e^{CSCC(z,w) - SCC(2z,w)/2} \odot_{z} \ddot{Set}(z,w)}{e^{-SCC\left(\frac{2z}{1+w},w\right)} \odot_{z} \widehat{Set}(z,w)}$$

where

$$\widehat{Set}(z,w) = \sum_{n \ge 0} \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^n}{n!}, \quad \ddot{Set}(z,w) = \sum_{n \ge 0} \frac{1}{(1+w)^{n^2}} \frac{z^n}{n!}.$$

Proof of the main enumeration theorem

- Let u mark ordinary source-like components in 2-CNF.
- Let v mark ordinary isolated components in 2-CNF (by pairs).
- Take **implication product** of *set* of ordinary components and 2-CNF.
- Add an arbitrary subset of ordinary isolated components. EGF of one pair of isolated components is SCC(2z)/2.
- Now, every source-like component is marked by u or 1, and every ordinary isolated pair is marked by 2u, v or 1.

$$egf[C\ddot{N}F_{2}(z, u + 1, 2u + v + 1)] \\ = egf\Big[\left(e^{u \cdot SCC} \left(\frac{2z}{w+1} \right) \odot_{z} \widehat{Set}(z) \right) C\ddot{N}F_{2}(z, 1, 1) \Big] \cdot e^{vSCC(2z)/2}$$

- ▶ Let u = −1. An implication digraph without source-like ordinary components is a disjoint set of contradictory and ordinary components.
- Complete with arithmetic transformations.

Two corollaries

Corollary 1 (inversion of the main theorem)

Exponential GF of contradictory strongly connected components is

$$\operatorname{CSCC}(z, w) = \frac{1}{2}\operatorname{SCC}(2z, w) + \log\left(\operatorname{BG}(z, w) \odot_{z}\left[\frac{\operatorname{CNF}_{2}(z, w)}{G\left(\frac{2z}{w+1}\right)}\right]\right)$$

where BG(z) =
$$\sum_{n=0}^{\infty} (1 + w)^{n^2} \frac{z^n}{n!}$$
 is the EGF of bipartite graphs.

Corollary 2 (no contradictory components) Implication GF of satisfiable 2-CNF is

$$\ddot{S}(z,w) = \left[\sqrt{G(z,w)\odot_z \frac{1}{G(2z,w)}}\odot_z \ddot{Set}(z,w)\right] G\left(\frac{2z}{1+w},w\right).$$

Summary

Discussed today

- 1. New symbolic method for 2-CNF with given strong and contradictory components: Implication GF and friends
- 2. Satisfiable 2-CNF: particular case with CSCC(z, w) = 0.
- 3. Exponential GF for Contradictory SCC

Behind the scenes

- 2-CNF with marked source-like SCC, isolated SCC and contradictory SCC
- Multi-2-CNF (with loops and multiple clauses) yield simpler expressions
- Asymptotic analysis of divergent series (Fourier and friends)

This talk is dedicated to the memory of Philippe Flajolet

and to the strongly connected people of contradictory Belarus

Thank you for your attention.