Generating functions of graphs, directed graphs and 2-SAT

Élie de Panafieu ${ }^{\text {a }}$ Sergey Dovgal ${ }^{\text {b }}$ Dimbinaina Ralaivaosaona ${ }^{\text {c }}$ Vonjy Rasendrahasina ${ }^{\text {d }}$ Vlady Ravelomanana ${ }^{e} \quad$ Alexandros Singh ${ }^{f}$ Stephan Wagner ${ }^{\text {g }}$
${ }^{\text {a Bell Labs, Nokia }}$
${ }^{\mathrm{b}}$ LaBRI, Université de Bordeaux
${ }^{\text {c S Stellenbosch University }}$
${ }^{\mathrm{d}}$ Antananarivo, Madagascar
${ }^{e}$ IRIF, Université de Paris
${ }^{f}$ LIPN, Université Sorbonne Paris Nord
${ }^{\text {g }}$ University of Uppsala

Seminaire Modèles et Algorithmes, LIGM, 30/03/2021 (online)

Part I. Generating functions and simple graphs

Generating functions and the symbolic method

Framework

- Graphs are discrete objects with labeled vertices and edges
- The size of the graph is the number of its vertices
- The secondary parameter is the number of edges
- Let $a_{n, m}$ be the number of graphs with n vertices and m edges

Generating function of the counting sequence:

$$
A(z, w)=\sum_{n, m=0}^{\infty} a_{n, m} \frac{z^{n}}{n!} w^{m}
$$

The cartesian product

$$
\left(a_{0}+a_{1} \frac{z}{1!}+a_{2} \frac{z^{2}}{2!}+\ldots\right)\left(b_{0}+b_{1} \frac{z}{1!}+b_{2} \frac{z^{2}}{2!}+\ldots\right)=c_{0}+c_{1} \frac{z}{1!}+c_{2} \frac{z^{2}}{2!}+\ldots
$$

The convolution rule corresponding to EGF:

$$
c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k}
$$

The Sets, Sequences and Cycles

- $A(z) \times A(z)$ is a ordered pair of generating functions
- A sequence (ordered)

$$
\operatorname{Seq}_{A}(z)=1+A(z)+A(z)^{2}+A(z)^{3}+\ldots=\frac{1}{1-A(z)}
$$

- $\frac{1}{2} A(z)^{2}$ is an unordered pair
- A set (non-ordered)

$$
\operatorname{Set}_{A}(z)=1+A(z)+\frac{A(z)^{2}}{2!}+\frac{A(z)^{3}}{3!}+\ldots=e^{A(z)}
$$

- A cycle is a sequence modulo cyclic shifts

$$
\mathrm{Cyc}_{A}(z)=A(z)+\frac{A(z)^{2}}{2}+\frac{A(z)^{3}}{3}+\ldots=\log \frac{1}{1-A(z)}
$$

Pointed derivative

Theorem
Let $A(z)=\sum_{n \geqslant 0} a_{n} \frac{z^{n}}{n!}$ count a family \mathcal{A} of graphs. Let

$$
A^{\bullet}(z):=z \partial_{z} A(z)=\sum_{n \geqslant 0} n a_{n} \frac{z^{n}}{n!} .
$$

Then, $A(z)$ counts graphs from \mathcal{A} with one distinguished vertex.

Cayley formula for trees

Theorem

The number of labelled trees with n vertices is n^{n-2}.
Proof. Let $T(z)$ and $U(z)$ count rooted and unrooted trees.

- The number of endomorphisms $[n] \rightarrow[n]$ is n^{n}.
- Let $E(z)=\frac{n^{n}}{n!}$ be the EGF of endomorphisms.
- Then, $E(z)=\operatorname{Set}(\operatorname{Cyc}(T(z)))$, therefore,

Cayley formula for trees (continued)

- Also trees:

$$
U^{\bullet \bullet}(z)=\operatorname{Seq}_{T}(z)=\frac{1}{1-T(z)}
$$

- Therefore,

$$
\sum_{n=0}^{\infty} n^{2} u_{n} \frac{z^{n}}{n!}=\frac{1}{1-T(z)}=\sum_{n=0}^{\infty} n^{n} \frac{z^{n}}{n!}
$$

- The number of rooted labelled trees is n^{n-1}.

Rooted, Unrooted and Monocyclic

Theorem
The EGF of Rooted and Unrooted trees, and Monocycles $T(z), U(z)$ and $M(z)$ satisfy

$$
\begin{aligned}
T(z) & =z e^{T(z)} \\
U(z) & =T(z)-\frac{T(z)^{2}}{2} \\
M(z) & =\frac{1}{2}\left[\log \frac{1}{1-T(z)}-T(z)-\frac{T(z)^{2}}{2}\right]
\end{aligned}
$$

Unrooted trees and Monocycles (continued)

Bicycles

$$
B^{\prime}{ }_{T}^{\prime}(z)=\frac{1}{8} \frac{1}{(1-T(z))^{3}}-\varepsilon(z)
$$

The function $\varepsilon(z)$ includes "corner cases", where the length of one of the cycles is less than 3.

Bicycles (continued)

There are essentially two types of bicycles (a finite number of types)

$$
\begin{aligned}
B(z) & =B_{\odot \odot}(z)+B_{\odot \odot}(z) \\
& =\left(\frac{1}{8}+\frac{1}{12}\right) \frac{1}{(1-T(z))^{3}}-\varepsilon(z) \\
& =\frac{5}{24} \frac{1}{(1-T(z))^{3}}-\varepsilon(z)
\end{aligned}
$$

Phase transition

Symbolic constructions

- Unrooted Trees and Monocycles $e^{U(z)+M(z)}$
- With one additional bicycle $e^{U(z)+M(z)} B(z)$

Part II. Above the threshold

How about many-cycles?

Δ-multigraphs
Let \mathcal{D} be the set of allowed vertex degrees, and $\Delta(x)=\sum_{d \in \mathcal{D}} \frac{x^{d}}{d!}$.
Proposition
The number of Δ-multigraphs with n vertices and m multiedges is

$$
\mathrm{MG}_{\Delta, n, m}=(2 m)!\left[x^{2 m}\right] \Delta(x)^{n} .
$$

Proof. A multigraph is obtained by linking its half-edges.

Excess counting

Definition

A multigraph with n vertices and $n+k$ edges has an excess k. (Bicycles have excess 1, Tricycles have excess 2, etc.)

Proposition

The generating function of Δ-multigraphs (not necessarily connected) of excess k is equal to

$$
\mathrm{MG}_{\Delta, k}(z)=\frac{2^{k}}{\sqrt{\pi}} \Gamma(k+1 / 2)\left[x^{2 k}\right] \frac{1}{\left(1-2 z x^{-2} \Delta(x)\right)^{k+1 / 2}}
$$

where

$$
\frac{2^{k}}{\sqrt{\pi}} \Gamma(k+1 / 2)= \begin{cases}\frac{(2 k)!}{2^{k} k!} & \text { if } k \geqslant 0 \\ (-1)^{k} \frac{2^{|k|}|k|!}{(2|k|)!} & \text { otherwise }\end{cases}
$$

Proof. Coefficient manipulation and magic.

Excess counting (continued)

Proposition

The EGF of Δ-multigraphs of excess k with an additional variable u marking the connected components that are trees is
$\operatorname{MG}_{\Delta, k}(z, u)=\frac{2^{k}}{\sqrt{\pi}} \Gamma(k+1 / 2)\left[x^{2 k}\right] \frac{1}{\left(1-2 x^{-2}(f(z, x)+u U(z))\right)^{k+1 / 2}}$,
where

$$
f(z, x)=z \Delta(x+T(z))-z \Delta(T(z))-x T(z)
$$

Proof. $f(z, x)$ is EGF of one vertex with attached half-edges and trees

+ Coefficient manipulation and magic

Marking vertices in the complex component

Proposition

The generating function of Δ-multigraphs of excess k with additional variables $u, v, z_{u}, z_{v}, z_{c x}$ marking respectively the numbers of trees, unicycles, vertices in trees, in unicycles, and in the complex part, is
$\operatorname{MG}_{\Delta, k}\left(z, u, v, z_{u}, z_{v}, z_{c x}\right)=$

$$
\frac{2^{k}}{\sqrt{\pi}} \Gamma(k+1 / 2)\left[x^{2 k}\right] \frac{e^{-M\left(z_{c x} z\right)+v M\left(z_{v} z\right)}}{\left(1-2 x^{-2}\left(f\left(z_{c x} z, x\right)+u U\left(z_{u} z\right)\right)\right)^{k+1 / 2}},
$$

where

$$
f(z, x)=z \Delta(x+T(z))-z \Delta(T(z))-x T(z)
$$

Extensive parameter list available for marking

- Number of trees
- Vertices in trees
- Number of unicycles
- Vertices in unicycles
- Vertices in the "complex" part
- The core and the kernel (pruning the trees and smoothing the paths)
- * The number of connected multi-cyclic components (if small) by inclusion-exclusion: direct access to the giant component

Part III. Strongly connected components in directed graphs

Directed graphs and their components

Components ad,
(c) and do are strongly-connected components.

- Components ad a do are source-like components
- Component is a sink-like component

The arrow product

The arrow product convolution rule

$$
\text { Let } a_{n}=a_{n}(w), b_{n}=b_{n}(w), c_{n}=c_{n}(w)
$$

$$
\left(\sum_{n=0}^{\infty} a_{n} \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} b_{n} \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^{n}}{n!}\right)=\sum_{n=0}^{\infty} c_{n} \frac{1}{(1+w)^{\binom{n}{2}} \frac{z^{n}}{n!}}
$$

The convolution rule corresponding to Graphic GF:

$$
c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k}(1+w)^{k(n-k)}
$$

Conversion between Exponential GF and Graphic GF

$$
\widehat{A}(z, w)=\sum_{n=0}^{\infty} a_{n}(w) \frac{1}{(1+w)^{\binom{2}{2}} \frac{z^{n}}{n!}} \quad \quad A(z, w)=\sum_{n=0}^{\infty} a_{n}(w) \frac{z^{n}}{n!}
$$

- Exponential Hadamard product:

$$
\left(\sum_{n \geqslant 0} a_{n}(\mathrm{w}) \frac{z^{n}}{n!}\right) \odot_{z}\left(\sum_{n \geqslant 0} b_{n}(\mathrm{w}) \frac{z^{n}}{n!}\right):=\sum_{n \geqslant 0} a_{n}(\mathrm{w}) b_{n}(\mathrm{w}) \frac{z^{n}}{n!}
$$

- Exponential GF for graphs, Graphic GF for sets:
- Conversion formulas:

$$
A(z, w)=G(z, w) \odot_{z} \widehat{A}(z, w)
$$

$$
\widehat{A}(z, w)=\widehat{\operatorname{Set}}(z, w) \odot_{z} A(z, w)
$$

Main enumeration theorem

[Liskovets, Robinson, Gessel, Wright et. al. '1970's] [de Panafieu, D. '2019]
Theorem (rediscovery of the results from '1970s)

- Graphic GF for digraphs with strongly connected components from given family $\mathcal{S C C}$ is

$$
\widehat{D}(z, w)=\frac{1}{e^{-\operatorname{SCC}(z, w)} \odot_{z} \widehat{\operatorname{Set}}(z, w)}
$$

where $\operatorname{SCC}(z, w)$ is the Exponential GF.
Compare with simple graphs (folklore)

- Exponential GF for graphs with connected components from given family \mathcal{C} is

$$
G(z, w)=e^{C(z, w)}=\frac{1}{e^{-C(z, w)}}
$$

Proof of the main enumeration theorem

- Let u mark source-like components in \mathcal{D}.
- \mathcal{D} with distinguished source-like components is an arrow product of a set of strong components and \mathcal{D}.

$$
\widehat{D}(z, w, u+1)=\left(e^{u \cdot \operatorname{scc}(z, w)} \odot_{z} \widehat{\operatorname{Set}}(z, w)\right) \cdot \widehat{D}(z, w, 1)
$$

- Set $u=-1$. Result follows: $\widehat{D}(z, w)=\frac{1}{e^{-\operatorname{SCC}(z, w)} \odot_{z} \widehat{\operatorname{Set}(z, w)}}$.

Corollary: strongly connected digraphs

[Liskovets, Robinson, Gessel, Wright et. al. '1970's] [de Panafieu, D. '2019]

Theorem
Exponential GF of strongly connected digraphs is

$$
\operatorname{SCC}(z, w)=-\log \left(G(z, w) \odot_{z} \frac{1}{G(z, w)}\right)
$$

Proof. Inversion of the main enumeration theorem

$$
G(z, w)=\widehat{D}(z, w)=\frac{1}{e^{-\operatorname{SCC}(z, w)} \odot_{z} \widehat{\operatorname{Set}}(z, w)}
$$

Graphic GF of all digraphs $\widehat{D}(z, w)$ equals the EGF of graphs $G(z, w)$.

Directed acyclic graphs

DAGs

A digraph is directed acyclic if its connected components are only single vertices
$\operatorname{SCC}(z, w)=z$
$\operatorname{DAG}(z, w)=\frac{1}{\sum_{n \geqslant 0}(1+w)^{-\binom{n}{2} \frac{z^{n}}{n!}}}$

Phase transition in directed graphs

Elementary digraphs
A digraph is called elementary if its connected components are only single vertices or cycles

$$
\operatorname{SCC}(z, w)=z+\ln \frac{1}{1-z w}-\varepsilon(z, w)
$$

$$
\operatorname{Elem}(z, w)=\frac{1}{e^{-\operatorname{SCC}(z, w)} \odot_{z} \widehat{\operatorname{Set}}(z, w)}
$$

Part IV. Satisfiable 2-CNF

Exhibition result

Theorem. Let $S_{n, m}$ be the number of satisfiable 2-CNF with n Boolean literals and m clauses. Then,

$$
\ddot{S}(z, w)=\left[\sqrt{G(z, w) \odot_{z} \frac{1}{G(2 z, w)}} \odot_{z} \ddot{\operatorname{Se}} t(z, w)\right] G\left(\frac{2 z}{1+w}, w\right)
$$

where

- $\ddot{S}(z, w):=\sum_{n=0}^{\infty} \sum_{m=0}^{2 n(n-1)} S_{n, m} \frac{w^{m}}{(1+w)^{n^{2}}} \frac{z^{n}}{n!}$
- $\ddot{\operatorname{Set}}(z, w):=\sum_{n=0}^{\infty} \frac{1}{(1+w)^{n^{2}}} \frac{z^{n}}{n!}$
- $G(z, w):=\sum_{n=0}^{\infty}(1+w)^{\binom{n}{2} \frac{n^{n}}{n!} \text { is the EGF of all simple graphs }}$
- \odot_{z} is the exponential Hadamard product

$$
\left(\sum_{n=0}^{\infty} a_{n}(\mathrm{w}) \frac{z^{n}}{n!}\right) \odot_{z}\left(\sum_{n=0}^{\infty} b_{n}(\mathrm{w}) \frac{z^{n}}{n!}\right):=\sum_{n=0}^{\infty} a_{n}(\mathrm{w}) b_{n}(\mathrm{w}) \frac{z^{n}}{n!} .
$$

Implication digraphs

$$
\begin{cases}\neg x_{1} \vee \neg x_{2} & =1 \\ \neg x_{1} \vee x_{2} & =1 \\ x_{3} \vee x_{4} & =1 \\ x_{1} \vee \neg x_{3} & =1 \\ x_{3} \vee \neg x_{4} & =1\end{cases}
$$

Replace each clause $x \vee y$ with two implications $\bar{x} \rightarrow y$ and $\bar{y} \rightarrow x$.
Proposition (folklore / [Aspvall, Plass, Tarjan '82])
2-CNF is satisfiable if and only if there is no contradictory circuit.
The above $2-\mathrm{CNF}$ is not satisfiable

N.B. Each variable of a contradictory component belongs to a contradictory circuit.

Implication digraphs and their components

2-CNF implication digraph

(Contradictory)

- $x \bar{x}$ and $y \bar{y}$ are contradictory strongly connected
- a0 and bo are ordinary source-like
- ao and bo are ordinary sink-like
- © and © are ordinary isolated

The implication product

The implication product convolution rule

If \widehat{A} is Graphic GF and \ddot{B}, \ddot{C} are Implication GF then

$$
\left(\sum_{n=0}^{\infty} a_{n} \frac{2^{n}}{(1+w)^{(n+1} 2} \frac{z^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} b_{n} \frac{1}{(1+w)^{n^{2}}} \frac{z^{n}}{n!}\right)=\sum_{n=0}^{\infty} c_{n} \frac{1}{(1+w)^{n^{2}}} \frac{z^{n}}{n!}
$$

$$
\widehat{A}\left(\frac{2 z}{1+w}\right) \cdot \ddot{B}(z, w)=\ddot{C}(z, w)
$$

Combinatorial convolution rule corresponding to Implication GF:

$$
c_{n}=\sum_{k=0}^{n}\binom{n}{k} 2^{k} a_{k} b_{n-k}(1+w)^{k \cdot 2(n-k)+\binom{k}{2}}
$$

Main enumeration theorem for 2-CNF

Theorem ([de Panafieu, D., Ravelomanana '2021])

- Implication GF for implication digraphs with ordinary components from given SCC and contradictory components from given $\mathcal{C S C C}$ is

$$
\ddot{\operatorname{CN}} F_{2}(z, w)=\frac{e^{\operatorname{CSCC}(z, w)-\operatorname{scc}(2 z, w) / 2} \odot_{z} \ddot{\operatorname{Se}} t(z, w)}{e^{-\operatorname{scc}\left(\frac{2 z}{1+w}, w\right)} \odot_{z} \widehat{\operatorname{Set}}(z, w)}
$$

- where

Proof of the main enumeration theorem

- Let u mark ordinary source-like components in 2-CNF.
- Let v mark ordinary isolated components in 2-CNF (by pairs).
- Take implication product of set of ordinary components and 2-CNF.
- Add an arbitrary subset of ordinary isolated components. EGF of one pair of isolated components is $\operatorname{SCC}(2 z) / 2$.
- Now, every source-like component is marked by u or 1, and every ordinary isolated pair is marked by 2 u , v or 1 .

$$
\begin{aligned}
e g f\left[\mathrm{CNF}_{2}(z, \mathrm{u}\right. & +1,2 \mathrm{u}+\mathrm{v}+1)] \\
& =\operatorname{egf}\left[\left(e^{\mathrm{u} \cdot \operatorname{Scc}\left(\frac{2 z}{w+1}\right)} \bigodot_{z} \widehat{\operatorname{Set}(z)}\right) \operatorname{CNF}_{2}(z, 1,1)\right] \cdot e^{\mathrm{vSCC}(2 z) / 2}
\end{aligned}
$$

- Let $u=-1$. An implication digraph without source-like ordinary components is a disjoint set of contradictory and ordinary components.
- Complete with arithmetic transformations.

Two corollaries

Corollary 1 (inversion of the main theorem)

Exponential GF of contradictory strongly connected components is

$$
\operatorname{CSCC}(z, w)=\frac{1}{2} \operatorname{SCC}(2 z, w)+\log \left(\operatorname{BG}(z, w) \odot_{z}\left[\frac{\ddot{\mathrm{NF}}_{2}(z, w)}{G\left(\frac{2 z}{w+1}\right)}\right]\right)
$$

where $\mathrm{BG}(z)=\sum_{n=0}^{\infty}(1+w)^{n^{2}} \frac{z^{n}}{n!}$ is the EGF of bipartite graphs.
Corollary 2 (no contradictory components) Implication GF of satisfiable 2-CNF is

$$
\ddot{S}(z, w)=\left[\sqrt{G(z, w) \odot_{z} \frac{1}{G(2 z, w)}} \odot_{z} \ddot{\operatorname{Set}}(z, w)\right] G\left(\frac{2 z}{1+w}, w\right) .
$$

Summary

Discussed today

1. Generating functions of

- Graphs constructed below the threshold of the phase transition
- (Multi-)graphs above the threshold (giant component)
- Directed graphs (with given strong components)
- 2-Conjunctive Normal Forms

2. Symbolic method for 2-CNF is 2 month old; satisfiable formulas is a particular case

Thank you for your attention.

