Generating functions of graphs, directed graphs and 2-SAT

Élie de Panafieu ^a Sergey Dovgal ^b Dimbinaina Ralaivaosaona ^c Vonjy Rasendrahasina ^d Vlady Ravelomanana ^e Alexandros Singh ^f Stephan Wagner ^g

^aBell Labs, Nokia

^bLaBRI, Université de Bordeaux

^cStellenbosch University

^dAntananarivo, Madagascar

^eIRIF, Université de Paris

^fLIPN, Université Sorbonne Paris Nord

^gUniversity of Uppsala

Seminaire Modèles et Algorithmes, LIGM, 30/03/2021 (online)

Part I. Generating functions and simple graphs

Generating functions and the symbolic method

Framework

- Graphs are discrete objects with labeled vertices and edges
- The size of the graph is the number of its vertices
- The secondary parameter is the number of edges

• Let $a_{n,m}$ be the number of graphs with *n* vertices and *m* edges Generating function of the counting sequence:

$$A(z,w) = \sum_{n,m=0}^{\infty} a_{n,m} \frac{z^n}{n!} w^m$$

The cartesian product

$$\left(a_{0} + a_{1}\frac{z}{1!} + a_{2}\frac{z^{2}}{2!} + \dots\right)\left(b_{0} + b_{1}\frac{z}{1!} + b_{2}\frac{z^{2}}{2!} + \dots\right) = c_{0} + c_{1}\frac{z}{1!} + c_{2}\frac{z^{2}}{2!} + \dots$$

The convolution rule corresponding to EGF:

$$c_n = \sum_{k=0}^n \binom{n}{k} a_k b_{n-k}$$

The Sets, Sequences and Cycles

- $A(z) \times A(z)$ is a *ordered pair* of generating functions
- A sequence (ordered)

Seq_A(z) = 1 + A(z) + A(z)² + A(z)³ + ... =
$$\frac{1}{1 - A(z)}$$

$$\operatorname{Set}_{A}(z) = 1 + A(z) + \frac{A(z)^{2}}{2!} + \frac{A(z)^{3}}{3!} + \ldots = e^{A(z)}$$

A cycle is a sequence modulo cyclic shifts

$$Cyc_A(z) = A(z) + \frac{A(z)^2}{2} + \frac{A(z)^3}{3} + \ldots = \log \frac{1}{1 - A(z)^3}$$

-1

Pointed derivative

Theorem Let $A(z) = \sum_{n \ge 0} a_n \frac{z^n}{n!}$ count a family \mathcal{A} of graphs. Let $A^{\bullet}(z) := z \partial_z A(z) = \sum_{n \ge 0} n a_n \frac{z^n}{n!}.$

Then, A(z) counts graphs from A with one distinguished vertex.

Cayley formula for trees

Theorem

The number of labelled trees with *n* vertices is n^{n-2} .

Proof. Let T(z) and U(z) count rooted and unrooted trees.

- The number of endomorphisms $[n] \rightarrow [n]$ is n^n .
- Let $E(z) = \frac{n^n}{n!}$ be the EGF of endomorphisms.
- Then, E(z) = Set(Cyc(T(z))), therefore,

Cayley formula for trees (continued)

► Therefore,

$$\sum_{n=0}^{\infty} n^2 u_n \frac{z^n}{n!} = \frac{1}{1 - T(z)} = \sum_{n=0}^{\infty} n^n \frac{z^n}{n!}$$

• The number of *rooted* labelled trees is n^{n-1} .

Rooted, Unrooted and Monocyclic

Theorem

The EGF of Rooted and Unrooted trees, and Monocycles T(z), U(z) and M(z) satisfy

$$T(z) = ze^{T(z)}$$

$$U(z) = T(z) - \frac{T(z)^2}{2}$$

$$M(z) = \frac{1}{2} \left[\log \frac{1}{1 - T(z)} - T(z) - \frac{T(z)^2}{2} \right]$$

Unrooted trees and Monocycles (continued)

Bicycles

$$B_{\text{prod}}(z) = \frac{1}{8} \frac{1}{(1 - T(z))^3} - \varepsilon(z)$$

The function $\varepsilon(z)$ includes "corner cases", where the length of one of the cycles is less than 3.

Bicycles (continued)

There are essentially two types of bicycles (a finite number of types)

Phase transition

Symbolic constructions

- Unrooted Trees and Monocycles $e^{U(z)+M(z)}$
- With one additional bicycle $e^{U(z)+M(z)}B(z)$

Part II. Above the threshold

How about many-cycles?

$\Delta\text{-multigraphs}$

Let \mathcal{D} be the set of allowed vertex degrees, and $\Delta(x) = \sum_{d \in \mathcal{D}} \frac{x^d}{d!}$.

Proposition

The number of Δ -multigraphs with *n* vertices and *m* multiedges is

$$\mathsf{MG}_{\Delta,n,m} = (2m)![x^{2m}]\Delta(x)^n.$$

Proof. A multigraph is obtained by linking its half-edges.

Excess counting

Definition

A multigraph with *n* vertices and n + k edges has an excess *k*. (Bicycles have excess 1, Tricycles have excess 2, etc.)

Proposition

The generating function of Δ -multigraphs (not necessarily connected) of excess k is equal to

$$\mathsf{MG}_{\Delta,k}(z) = \frac{2^k}{\sqrt{\pi}} \Gamma(k+1/2) [x^{2k}] \frac{1}{\left(1 - 2zx^{-2}\Delta(x)\right)^{k+1/2}},$$

where

$$\frac{2^k}{\sqrt{\pi}}\Gamma(k+1/2) = \begin{cases} \frac{(2k)!}{2^k k!} & \text{if } k \geqslant 0, \\ (-1)^k \frac{2^{|k|} |k|!}{(2|k|)!} & \text{otherwise.} \end{cases}$$

Proof. Coefficient manipulation and magic.

Excess counting (continued)

Proposition

The EGF of Δ -multigraphs of excess *k* with an additional variable *u* marking the connected components that are trees is

$$\mathsf{MG}_{\Delta,k}(z,u) = \frac{2^k}{\sqrt{\pi}} \Gamma(k+1/2) [x^{2^k}] \frac{1}{(1-2x^{-2}(f(z,x)+uU(z)))^{k+1/2}},$$

where

$$f(z, x) = z\Delta(x + T(z)) - z\Delta(T(z)) - xT(z).$$

Proof. f(z, x) is EGF of one vertex with attached half-edges and trees

+ Coefficient manipulation and magic

Marking vertices in the complex component

Proposition

The generating function of Δ -multigraphs of excess k with additional variables u, v, z_u , z_v , z_{cx} marking respectively the numbers of trees, unicycles, vertices in trees, in unicycles, and in the complex part, is

$$\mathsf{MG}_{\Delta,k}(z, u, v, z_u, z_v, z_{cx}) =$$

$$\frac{2^{k}}{\sqrt{\pi}}\Gamma(k+1/2)[x^{2k}]\frac{e^{-M(z_{cx}z)+vM(z_{v}z)}}{(1-2x^{-2}(f(z_{cx}z,x)+uU(z_{u}z)))^{k+1/2}},$$

where

$$f(z, x) = z\Delta(x + T(z)) - z\Delta(T(z)) - xT(z)$$

Extensive parameter list available for marking

- Number of trees
- Vertices in trees
- Number of unicycles
- Vertices in unicycles
- Vertices in the "complex" part
- The core and the kernel (pruning the trees and smoothing the paths)
- * The number of connected multi-cyclic components (if small) by inclusion-exclusion: direct access to the *giant component*

Part III. Strongly connected components in directed graphs

Directed graphs and their components

The arrow product

The arrow product convolution rule

Let
$$a_n = a_n(w)$$
, $b_n = b_n(w)$, $c_n = c_n(w)$,

$$\left(\sum_{n=0}^{\infty} a_n \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^n}{n!}\right) \left(\sum_{n=0}^{\infty} b_n \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^n}{n!}\right) = \sum_{n=0}^{\infty} c_n \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^n}{n!}$$

The convolution rule corresponding to Graphic GF:

$$c_n = \sum_{k=0}^n \binom{n}{k} a_k b_{n-k} (1+w)^{k(n-k)}$$

Conversion between Exponential GF and Graphic GF

$$\widehat{A}(z,w) = \sum_{n=0}^{\infty} a_n(w) \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^n}{n!}, \quad A(z,w) = \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!}$$

Exponential Hadamard product:

$$\left(\sum_{n\geq 0}a_n(\mathsf{w})\frac{z^n}{n!}\right)\odot_z\left(\sum_{n\geq 0}b_n(\mathsf{w})\frac{z^n}{n!}\right):=\sum_{n\geq 0}a_n(\mathsf{w})b_n(\mathsf{w})\frac{z^n}{n!}$$

Exponential GF for graphs, Graphic GF for sets:

$$G(z,w) = \sum_{n \ge 0} (1+w)^{\binom{n}{2}} \frac{z^n}{n!}, \quad \widehat{Set}(z,w) = \sum_{n \ge 0} \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^n}{n!},$$

Conversion formulas:

$$A(z,w) = G(z,w) \odot_z \widehat{A}(z,w) \qquad \widehat{A}(z,w) = \widehat{Set}(z,w) \odot_z A(z,w)$$

Main enumeration theorem

[Liskovets, Robinson, Gessel, Wright et. al. '1970's] [de Panafieu, D. '2019]

Theorem (rediscovery of the results from '1970s)

 Graphic GF for digraphs with strongly connected components from given family SCC is

$$\widehat{D}(z, w) = \frac{1}{e^{-\mathrm{SCC}(z, w)} \odot_z \widehat{Set}(z, w)}$$

where SCC(z, w) is the Exponential GF.

Compare with simple graphs (folklore)

Exponential GF for graphs with connected components from given family C is

$$G(z, w) = e^{C(z, w)} = \frac{1}{e^{-C(z, w)}}$$

Proof of the main enumeration theorem

- ▶ Let u mark *source-like components* in *D*.
- D with *distinguished* source-like components is an **arrow** product of a *set* of strong components and D.

$$\widehat{D}(z, w, u + 1) = \left(e^{u \cdot \mathbf{SCC}(z, w)} \odot_z \widehat{Set}(z, w)\right) \cdot \widehat{D}(z, w, 1).$$

Corollary: strongly connected digraphs

[Liskovets, Robinson, Gessel, Wright et. al. '1970's] [de Panafieu, D. '2019]

Theorem Exponential GF of strongly connected digraphs is

$$\operatorname{SCC}(z, w) = -\log\left(G(z, w) \odot_z \frac{1}{G(z, w)}\right)$$

Proof. Inversion of the main enumeration theorem

$$G(z, w) = \widehat{D}(z, w) = \frac{1}{e^{-\operatorname{SCC}(z, w)} \odot_z \widehat{\operatorname{Set}}(z, w)}$$

Graphic GF of all digraphs $\widehat{D}(z, w)$ equals the EGF of graphs G(z, w).

Directed acyclic graphs

DAGs

A digraph is *directed acyclic* if its connected components are only single vertices

$$SCC(z, w) = z$$
$$DAG(z, w) = \frac{1}{\sum_{n \ge 0} (1 + w)^{-\binom{n}{2}} \frac{z^n}{n!}}$$

Phase transition in directed graphs

Elementary digraphs

A digraph is called *elementary* if its connected components are only single vertices or cycles

$$SCC(z, w) = z + \ln \frac{1}{1 - zw} - \varepsilon(z, w)$$

$$\mathsf{Elem}(z, w) = \frac{1}{e^{-\mathsf{SCC}(z, w)} \odot_z \widehat{Set}(z, w)}$$

Part IV. Satisfiable 2-CNF

Exhibition result

Theorem. Let $S_{n,m}$ be the number of satisfiable 2-CNF with *n* Boolean literals and *m* clauses. Then,

$$\ddot{S}(z,w) = \left[\sqrt{G(z,w)\odot_z \frac{1}{G(2z,w)}}\odot_z \ddot{Set}(z,w)\right] G\left(\frac{2z}{1+w},w\right)$$

where

$$\begin{split} \ddot{S}(z,w) &:= \sum_{n=0}^{\infty} \sum_{m=0}^{2n(n-1)} S_{n,m} \frac{w^m}{(1+w)^{n^2}} \frac{z^n}{n!} \\ \ddot{S}et(z,w) &:= \sum_{n=0}^{\infty} \frac{1}{(1+w)^{n^2}} \frac{z^n}{n!} \\ \ddot{S}et(z,w) &:= \sum_{n=0}^{\infty} (1+w)^{\binom{n}{2}} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \ddot{S}et(z,w) &:= \sum_{n=0}^{\infty} (1+w)^{\binom{n}{2}} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{S}et(z,w) &:= \sum_{n=0}^{\infty} (1+w)^{\binom{n}{2}} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{S}et(z,w) &:= \sum_{n=0}^{\infty} (1+w)^{\binom{n}{2}} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{S}et(z,w) &:= \sum_{n=0}^{\infty} (1+w)^{\binom{n}{2}} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{S}et(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{S}et(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{S}et(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{S}et(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{S}et(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{S}et(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{S}et(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n}{n!} \frac{z^n}{n!} \text{ is the EGF of all simple graphs} \\ \dot{S}et(z,w) &:= \sum_{n=0}^{\infty} a_n(w) \frac{z^n}{n!} \frac{z^n}{$$

Implication digraphs

Replace each clause $x \lor y$ with two implications $\overline{x} \to y$ and $\overline{y} \to x$.

Proposition (folklore / [Aspvall, Plass, Tarjan '82])

2-CNF is satisfiable if and only if there is no contradictory circuit.

The above 2-CNF is not satisfiable

$$1 \longrightarrow \overline{2} \longrightarrow \overline{1} \longrightarrow \overline{3} \longrightarrow \overline{4} \longrightarrow \overline{3} \longrightarrow 1$$

N.B. Each variable of a contradictory component belongs to a contradictory circuit.

Implication digraphs and their components

The implication product

The implication product convolution rule If \hat{A} is Graphic GF and \ddot{B} , \ddot{C} are Implication GF then

Combinatorial convolution rule corresponding to Implication GF:

$$c_{n} = \sum_{k=0}^{n} {\binom{n}{k}} 2^{k} a_{k} b_{n-k} (1+w)^{k \cdot 2(n-k) + {\binom{k}{2}}}$$

Main enumeration theorem for 2-CNF

Theorem ([de Panafieu, D., Ravelomanana '2021])

Implication GF for implication digraphs with ordinary components from given SCC and contradictory components from given CSCC is

$$C\ddot{N}F_{2}(z,w) = \frac{e^{CSCC(z,w) - SCC(2z,w)/2} \odot_{z} \ddot{Set}(z,w)}{e^{-SCC\left(\frac{2z}{1+w},w\right)} \odot_{z} \widehat{Set}(z,w)}$$

where

$$\widehat{Set}(z,w) = \sum_{n \ge 0} \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^n}{n!}, \quad \ddot{Set}(z,w) = \sum_{n \ge 0} \frac{1}{(1+w)^{n^2}} \frac{z^n}{n!}.$$

Proof of the main enumeration theorem

- Let u mark ordinary source-like components in 2-CNF.
- Let v mark ordinary isolated components in 2-CNF (by pairs).
- Take **implication product** of *set* of ordinary components and 2-CNF.
- Add an arbitrary subset of ordinary isolated components. EGF of one pair of isolated components is SCC(2z)/2.
- Now, every source-like component is marked by u or 1, and every ordinary isolated pair is marked by 2u, v or 1.

$$egf[C\ddot{N}F_{2}(z, u + 1, 2u + v + 1)] \\ = egf\Big[\left(e^{u \cdot SCC} \left(\frac{2z}{w+1} \right) \odot_{z} \widehat{Set}(z) \right) C\ddot{N}F_{2}(z, 1, 1) \Big] \cdot e^{vSCC(2z)/2}$$

- ▶ Let u = −1. An implication digraph without source-like ordinary components is a disjoint set of contradictory and ordinary components.
- Complete with arithmetic transformations.

Two corollaries

Corollary 1 (inversion of the main theorem)

Exponential GF of contradictory strongly connected components is

$$\operatorname{CSCC}(z, w) = \frac{1}{2}\operatorname{SCC}(2z, w) + \log\left(\operatorname{BG}(z, w) \odot_{z}\left[\frac{\operatorname{CNF}_{2}(z, w)}{G\left(\frac{2z}{w+1}\right)}\right]\right)$$

where BG(z) =
$$\sum_{n=0}^{\infty} (1 + w)^{n^2} \frac{z^n}{n!}$$
 is the EGF of bipartite graphs.

Corollary 2 (no contradictory components) Implication GF of satisfiable 2-CNF is

$$\ddot{S}(z,w) = \left[\sqrt{G(z,w)\odot_z \frac{1}{G(2z,w)}}\odot_z \ddot{Set}(z,w)\right] G\left(\frac{2z}{1+w},w\right).$$

Summary

Discussed today

- 1. Generating functions of
 - Graphs constructed below the threshold of the phase transition
 - (Multi-)graphs above the threshold (giant component)
 - Directed graphs (with given strong components)
 - 2-Conjunctive Normal Forms
- 2. Symbolic method for 2-CNF is 2 month old; satisfiable formulas is a particular case

Thank you for your attention.