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Abstract

A one-dimensional N-walk with several letters
is a simplified version of a non-deterministic push-
down automaton whose underlying digraph of transi-
tions is a path. Each of the non-deterministic steps is
a set of the possible stack operations. We study the
acceptance probability of an empty word in
the model where non-deterministic steps are chosen
with given probabilities. We prove that the proba-
bility that the greedy algorithm finds an excursion
compatible with a given N-path undergoes a coarse
phase transition.

Non-deterministic walks
with several letters

•An N-walk is a sequence of sets of
admissible steps.
•A step of Dyck type can be of the form ↑x (adding a
letter) or ↓x (removing a letter), where x ∈ Σ.
Furthermore, a step can be of the form ↑x|y: add a
letter x if the stack head is y.
•An excursion with several letters is a sequence
of stack states, where each step either removes a top
stack letter, or adds one.
•An N-excursion is an N-walk compatible with at
least one deterministic excursion.
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Figure 1:Two realisations of a non-deterministic excursion

Choice of the step set

Consider an admissible N-step set S ⊂ 2∪x∈Σ{↑x,↓x}.
In the weighted model, each N-step is chosen indepen-
dently from some distribution over S .
We are looking for distributions

(
P(s)

)
s∈S that yield a

positive limit probability for an N-excursion.
1 P({↑x})P({↓y}) = 0 for any distinct x, y ∈ Σ;
2 P({↑x})P({↑y↓y})P({↓x}) = 0 (idem)
3 Any combination allowing to get stuck in a finite
number of moves is forbidden (except when the stack
is empty).

Running example. N-step set with two letters:
S =

{
{↑a},{↑b},{↑a,↓a},{↑b,↓b},{↑a,↓a,↑b,↓b}

}
Example from left-right mirror symmetry.

Ŝ =
{
{↓a},{↓b},{↑a,↓a},{↑b,↓b},{↑a,↓a,↑b,↓b}

}

Greedy algorithm

A greedy algorithm always tries to remove a letter when-
ever possible. Action probabilities for the greedy al-
gorithm, conditioned on the top letter of the stack (for
the running example):

P(↑a | a) = P({↑a})
P(↑b | a) = P({↑b, ↓b}) + P({↑b})
P(↓a | a) = P({↑a, ↓a}) + P({↑a, ↓a, ↑b, ↓b})
P(↑a | b) = P({↑a, ↓a}) + P({↑a})
P(↑b | b) = P({↑b})
P(↓b | b) = P({↑b, ↓b}) + P({↑a, ↓a, ↑b, ↓b})

•The drift is the expected height of the final stack
state divided by the length of the walk.
•Greedy algorithm fails if the drift is positive
•LR ∧ RL drift conditions provide the correct phase
transition threshold when |Σ| = 1.

Central result (presented for the running example)

Let∆ = det
P(↑a | a)− P(↓a | a) P(↑b | a)

P(↑a | b) P(↑b | b)− P(↓b | b)

 .

If the greedy algorithm finds a compatible excursion with positive limit probability, then ∆ > 0.
The boundary between the regions where the limit probability is positive and zero satisfies ∆ = 0.

Proof idea: recurrences and generating functions (GFs)

Let an, bn, wa
n, wb

n, ua
n, ub

n denote the probabilities that the top letter of a greedy walk of size n is a or b, and the weight
of strictly positive excursions starting with the letters a or b, and non-negative excursions starting with the letters a
or b or length n. Let A(z), B(z), Wa(z), Wb(z), Ua(z) and Ub(z) be their GFs. Then,

A(z) = z

1− z

(
P({↑a}) + P({↑a, ↓a}) + P({↑a, ↓a, ↑b, ↓b})

)
− zA(z)P({↑a, ↓a})

− z(A(z) + B(z))P({↑a, ↓a, ↑b, ↓b}) + A(z)Wa(z),
B(z) = z

1− z

(
P({↑b}) + P({↑b, ↓b})

)
− zB(z)P({↑b, ↓b}) + B(z)Wb(z),

Wx(z) = z2 ∑
y∈Σ

Uy(z)P(↑y | x)P(↓y | y) for x ∈ Σ,

Ux(z) = 1 + z2Ux(z)
∑

y∈Σ
Uy(z)P(↑y | x)P(↓y | y) for x ∈ Σ. (∗)

Ux(z) satisfy a system of quadratic equations. Next, Wx(±1) = 1 − P(↓x | x) are valid formal solutions. If they
correspond to principal branches of the generating functions, then the greedy algorithm succeeds with a positive
probability. That is not always the case: another branch will become principal after coalescence of the multiple roots,
which happens when ∆ = 0.

Conclusions, open problems

Existence of an excursion compatible with an N-walk is
a particular case of the Constraint Satisfiability Problem
(CSP). Study of the phase transitions in random CSP is
a rich ongoing research topic.
1 According to the simulations for S from the running
example, the condition ∆ > 0 is necessary and
sufficient for the limit true probability that an
N-walk is an N-excursion to be strictly positive.

2 Does the phase transition exist for the true
probability of acceptance when |Σ| ≥ 2?

3 If so, is the true phase transition threshold described
by a conjunction of the Left-Right and Right-Left
greedy algorithm thresholds when |Σ| ≥ 2?

4 If so, can we describe the asymptotics of the true
acceptance probability in the subcritical case (when
it tends to zero) and in the supercritical case (when
it is positive)?

5 If n is the length of an N-walk, and, for example,
P({↑x}) = Θ(n−1) together with P({↓y}) = Θ(n−1),
how does the phase transition threshold change?
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