# RESEARCH ANNOUNCEMENT: THE SUBCRITICAL 

CONSTANT OF 2-SAT IS $e^{-3 / 8 e^{2}} \approx 0.06260588 \ldots{ }^{*}$

SERGEY DOVGAL


#### Abstract

Using a novel technique of sum-representation and inclusionexclusion principle we obtain the constant $C$ in the asymptotic expression for probability of satisfiability of $2-\mathrm{CNF}$ $$
\mathbb{P}\left(F\left(n, n\left(1-\mu n^{-1 / 3}\right)\right) \text { is } \mathrm{SAT}\right)=1-\frac{C}{\mu^{3}}, \quad n, \mu \rightarrow \infty
$$ with explicit and unexpected value of $C=e^{-3 / 8 e^{2}} \approx 0.0626 \ldots$ which disproves Kim's "theorem" that $C=\frac{1}{16}=0.0625$.


## 1. Introduction

We consider directed graphs on $2 n$ vertices and $m$ edges whose labels are partitioned into positive and negative:

$$
V=\{1,2, \ldots, n, \overline{1}, \overline{2}, \ldots, \bar{n}\}
$$

Any 2-CNF with $n$ Boolean variables and $m$ clauses can be represented in the form of an implication digraph where to every clause $(x \vee y)$ we assign two directed edges $(\bar{x} \rightarrow y)$ and $(\bar{y} \rightarrow x)$.

We say that a pair of edges in a digraph form a conflict if the first edge is of the form $x \rightarrow y$ and the second edge is of the form $\bar{y} \rightarrow \bar{x}$. We say that a digraph is conflict-free if there are no conflicting pairs. Every implication digraph can be represented as an edge union of two conflict-free digraphs in $2^{m}$ ways. We call every such representation sum-representation.

A formula is satisfiable if its implication digraph doesn't contain contradictory cycles, i.e. directed circuits containing both vertices $x$ and $\bar{x}$. We count the contradictory circuits with the multiplicities of the corresponding simplified paths which will be explained below. The event that a formula is satisfiable is equivalent to the event that the number of contradictory circuits (with mentioned multiplicities) is equal to zero, which, by the inclusion-exclusion method, equal to

$$
\mathbb{P}(\xi=0)=1-\mathbb{E} \xi+\frac{1}{2!} \mathbb{E} \xi(\xi-1)-\ldots
$$

where $\xi$ represents the number of contradictory circuits with the multiplicities of simplified paths.

We claim that in the subcritical regime, i.e. when $m=n\left(1-\mu n^{-1 / 3}\right), n \rightarrow \infty$, $\mu \rightarrow \infty$ it holds

$$
\mathbb{E} \xi=C \mu^{-3}, \quad \mathbb{E} \xi(\xi-1)=O\left(\mu^{-6}\right)
$$

with the announced $C=e^{-3 / 8 e^{2}}$. This immediately implies the announced result.

## 2. Contradictory component in the sum-Representation

As shown in the paper "birth of the giant component", a random graph in its subcritical phase almost surely consists of trees and unicycles. We take a very particular sum-representation of a contradictory circuit containing a variable $x$ and $\bar{x}$, namely a sequence of trees nested on a directed path

$$
\mathcal{S}:=x \rightsquigarrow \bar{x} \rightsquigarrow y \rightsquigarrow \bar{y} .
$$

It is easy to see that this triple path, joined with its negated counterpart $y \rightsquigarrow \bar{y} \rightsquigarrow$ $x \rightsquigarrow \bar{x}$, forms a contradictory circuit, and for every contradictory circuit we can detect such a sub-shape. Effectively, if we count formulas with such distinguished paths, we are counting with multiplicities.

Already, the method of exponential generating functions together with the saddlepoint method introduced in [Janson, Knuth, Pittel, Luczak], gives

$$
\mathbb{P}(\text { a graphs contains } \mathcal{S}) \sim \frac{n!}{\left|F_{n, m}\right|}\left[z^{n}\right] \frac{U^{n-m}}{(n-m)!} e^{V(z)} \frac{1}{(1-T(z))^{3}}
$$

where $T(z)=\sum_{n} \frac{z^{n}}{n!} n^{n-1}$ is the exponential generating function (EGF) for rooted trees, $U(z)=\sum_{n} \frac{z^{n}}{n!} n^{n-2}$ is the EGF for unrooted trees, and

$$
V(z)=\frac{1}{2}\left[\log \frac{1}{1-T}-T-\frac{T^{2}}{2}\right]
$$

is the EGF for unicyclic components (corresponding directed versions can be obtained by the substitution $z \mapsto 2 z)$. Coefficient extraction gives us $\Theta\left(\mu^{-3}\right)$.

This needs a certain refinement: we didn't take into account that in the counted graphs the edge conflicts are forbidden. The last step is to account for this conflicts using inclusion-exclusion method and obtain the announced constant.

## 3. Marking edge conflicts

We are going to eliminate edge conflicts using inclusion-exclusion method. For this purpose, we add one more layer of inclusion-exclusion where $\vartheta$ represents the numberr of edge conflict pairs:

$$
\mathbb{P}(\vartheta=0)=1-\mathbb{E} \vartheta+\frac{1}{2!} \mathbb{E} \vartheta(\vartheta-1)-\ldots
$$

It can be easily shown that edge conflicts happen most probably in the forest (in other parts the corresponding contribtion is negligible by a factor $n^{1 / 3}$ ). A tree with a marked conflict obtains a generating function

$$
\iint\left(\partial_{z} U(z)\right)^{2} d z
$$

instead of $U(z)$. After marking $k$ pairs we need to account for the following adjustments: $3\binom{n}{2}$ is the total possible number of non-double pairs of edges. We approximate it by just $\frac{3}{2} n^{2}$. After marking two trees we adjust by a factor $\left.n^{2} \frac{T(z)^{2}}{U(z)^{2} z^{2}}\right|_{z=e^{-1}}$ where substitution yields $T=1, z=e^{-1}, U=1 / 2$. We also multiply by $(2 n)^{-4}$ because of the double (quadruple) factorial in the denominator.

Multiplying over the total contribution leads to massive cancellations and

$$
\text { term }_{k} \sim \frac{1}{k!}\left(\frac{3}{8} e^{2}\right)^{k}, \quad \sum_{k}(-1)^{k} \text { term }_{k} \sim e^{-3 e^{2} / 8} \sim 0.0626058824
$$

Details will follow elsewhere.
E-mail address: dovgal-at-lipn.fr

