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Part I. Phase transition in a random graph
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Zcn, ¢ > 1 unique giant component of size ©(n). Second

largest component O(log n)

m=

m= %nlog n graph becomes connected



Naming the phases

1
m=cn, c= 5(1 + un~ /)

very subcritical ¢ < % —€

subcritical [ — —00
critical peR

supercritical @ — 400

very supercritical ¢ > % + €

Subcritical phase: a good starting point to understand other
combinatorial structures.



Simplest phase transition ever

Theorem
Letc> 0. Asn — oo,

0, cc<l-¢
"= e c:l—i—i(;
n

Critical window: c =1+ %, xc R.

Bonus: asymptotic behaviour when x = x(n), x — oc?



Phase transition in random graphs

In this talk, all the objects are labelled.
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Consider a random graph G with n vertices and m edges
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L,
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Phase transition in random graphs

Theorem
Consider a random graph G with n vertices and m edges

m = cn

Then, as n — o0,

0, c> % + €.
Proof.

> Let T(z, w) and U(z, w) be the EGF of unrooted trees and
unicycles.

» Compute n![z"w™]e"(zW)+U(=W) ysing saddle point method and
divide by the total number of graphs.

O



Going into more details about f{1)

1, c< % — €
IP(G consists of trees and unicycles) = < flu), c= l(1 + pn1/3);
0, c> § + €.

f(p) is completely known ([Flajolet, Janson, Knuth, Luczak, Pittel]):

I 32/3
flp) = \/> /o Z k,F ??

k=0

Asymptotics at the tails is also known:

)
Tapp MU
) ~ NoT e H3/6
u — +00.

F(%) 21/4H3/4’



Going further down the rabbit hole about f{1)

When p — —o0,

flu) ~ 1

5
T — —o0.
A T

5
Question. What is so special about ﬂ?

When . — 400, only when || < n'/12,

Vor e H*/6

flp) ~ @W7

n—> 400

Question. What is so special about n'/12?



Heuristical explanation of %

P(only trees and unicycles) ~ 1 U — —00.

24P’

The first non-unicyclic components appearing are connected graphs
with 2 cycles. Cubic multigraphs with 2 vertices with weights:

GO

The sum of the “compensation factors”

(1 1\_5
20\4 " 6) 24
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: 5
Learning more about ;

The (weighted) number of cubic multigraphs with 2r vertices and 3r
edges is

o — (6r)! o — 5
T (2013012532 T 24
Theorem
Asm= %n, n — 0o,
2w e

P(complex component has excess r) ~ | —

3 3T(r+3)

Moral. Subcritical phase is helpful for understanding of the
combinatorics inside the window.



Heuristical explanation of |u| < n'/1?

Asm= 5(1+ pun~1/3),
P(G consists of trees and unicycles) = f{u) + O(u*n~1/?)

the error term O(u*n=1/3) corresponding to non-cubic kernels.
: 1 : : 1 : 1
4 1 6

When p = @(n1/12), kernels with degrees > 4 appear with positive
probability.



Part 1l. Beyond random graphs



Graph-like combinatorial structures

v

Graphs with degree constraints

v

2-SAT

v

Acyclic digraphs

v

Digraphs



Graphs with allowed degrees from a given set



Graphs with degree constraints

[De Panafieu, Ramos], [D., Ravelomanana]

Allowed degrees: A = {0, 09,03,04,05,...}, 01 =1ordy =1

Theorem (D., Ravelomanana ’2018)

As n — o0, for m = cn,
1, c<an —¢€

P(Ga consists of trees and unicycles) — { fa(p), ¢= aa(l+ un'/3);
0, c> aa + e

fa(p) = ACAp), where ap and Cp are explicit.

16/37



Graphs with degree constraints

[De Panafieu, Ramos], [D., Ravelomanana]

Theorem (D., Ravelomanana ’2018)

As n — o0, for m = cn,

1, c< apa — €
P(Ga consists of trees and unicycles) — { fa(u), c¢=aa(l+ Mn—1/3);
0, c>ap + e

fa(p) = ACA ), where ap and Cp are explicit.

Proof.
> Let Ta(z, w) and Ua(z, w) be the EGF of unrooted trees and
unicycles with degree constraints.
» Compute n![z"w"]e’a(zW)+Ua(zW) and divide by total number
of graphs (given by [De Panafieu, Ramos])
L]



Subcritical phase of 2-SAT



2-SAT: Some background

Theorem (Bollobas, Borgs, Chayes, Kim, Wilson ’2001)

Consider a random 2-CNF F, ,, with n variables and m = cn clauses.

1=0(ul™®),  pn— —oc
P(Fn,m is SAT) — ¢ ©(1), c=1+ un~/3,
exp(—O(|ul?)), p— oco.

Theorem (Kim ’2008)

1

P(Fymis SAT) ~1 — ———
o 534D~ 17 g

Question. Where does 1—16 come from?

Question. What is the role of the cubic kernels?



Analytic combinatorics ¢ 2-SAT

> A 2-CNF is represented as an implication digraph.

» Formula is UNSAT if and only if I3x: x ~» X~ x.

Major obstacle. No “tree-unicycle”-style decomposition available.
Contradictory components are not disconnected.

First idea. Inclusion-exclusion using contradictory patterns




Understanding % and cubic kernels of 2-SAT

Theorem (D. ’2019)
Asm=cn,c=1+4 un , 4 — —oo slowly enough, then cubic
contradictory kernel of excess r appear with probability C,|p|~>".

» C, is equal to the sum ) ,, 27" 5¢(M)/(2r)! taken over all possible

labelled cubic contradictory components of excess r;

~1/3

T 11
> %([/\})) 33 because of two double edges x — X, y — .

Corollary

1

P(Fymis SAT) ~ 1 — ———
o 5340 ~ L g

Open problem. P(F, , is SAT) =7 when p € R



A systematic approach to inclusion-exclusion



The philosophy of Analytic Combinatorics

Analytic Combinatorics = Symbolic Method + Asymptotic Analysis

The philosophy of the symbolic method. (Bergeron, Labelle, Leroux).

‘ Combinatorial decomposition ‘ = ‘ Functional equation ‘

Follow-up: asymptotic analysis. (Flajolet, Odlyzko, ...).

[Equation] = [GF expansion] = [Asympioics]



Classical Inclusion-Exclusion principle

Additional variables mark special vertices or groups of vertices

z R

Az, w,u) = E amk,rwkurﬁ :' O O
n,k,r ) ! !
1O}

A
D—_—

Example:
» nvertices

an k.r = #of graphs with > kedges

» risolated vertices

z"
B(z,w,u) := A(z,w,u+1) = Z bn,kirwkurﬁ
n,k,r
> nvertices

bik.r = #of graphs with » kedges

23/37



Graphic convolution rule

arz az’
2
2

A(Z) = a()"‘m W

graphic GF level

C(z) = A(2) - B(2)

24/37



Digraph enumeration theorem and its applications



Enumerating digraphs with given SCC

Theorem (Robinson *1973; De Panafieu, D. 2019)
Graphic GF for digraphs with strongly connected components from
given family SCC is given by

~ 1
D(z,W) = —seetom ® MG(z, —w)

where
» MG(z, w) is the EGF of multigraphs;
> © is the exponential Hadamard product

z" z" z"
Z g ® Z bna = Z anbnﬁ

n=>0 n>0 n=0
> Graphic GF is defined by
~ z"
Hz w) = an(W)T

n=0 e?Wn!



Two main applications of enumeration theorem

Corollary
Graphic GF for acyclic digraphs is

1

DAG(Z, W) = m

Corollary

Graphic GF for elementary digraphs (strong components are only
isolated vertices and cycles) is

1
-~ MG(—z,—w) + zwO,MG(—z, —w)

S(z, w)



Asymptotics of directed acyclic graphs



Asymptotics of directed acyclic graphs

Historical overview:
» When m = cn?, [Bender, Richmond, Robinson, Wormald *1984]

Theorem ([Ralaivaosaona, Rasendrahasina, Wagner "20+], [DP., D. ’20+])

Asm=cnc<1l,n—

P(digraph is acyclic) — 1 — ¢
Question. What happens when ¢ = 1?
Transition window. i € R.

Answered by Ralaivaosaona, Rasendrahasina, and Wagner: see
AofA’2020!



Subcritical phase of DAG enumeration

Theorem (De Panafieu, D. FPSAC’2020)
Asm = n(1+ pn~'/3), u — —oo sufficiently slowly,

C
P(Dp,m is acyclic) ~ |N|n71/3 ’ Z | |;r
M
Proof. ~
» Graphic GF for acyclic digraphs is m

» Write MG(z, w) in the product form
(trees, unicycles and complex components)

» Convert graphic GF into EGF + additional combinatorial magic

O



Critical phase of DAG enumeration

Theorem (De Panafieu, D. FPSAC’2020)
Asm = n(1+ un*1/3), uE R,

n|2m| 62” 4/3
#DAGm ~ (2 —m)! 4 <n> eHS/

where
. (6r)!
P e e e
r 2/3
> H(Z) = Zr>0 G (%7 % - %7 _3TM) Zr:

k

> G\ %) = 5 Yso St @>

3

(_

x"

> <Z anm) Oz=x (Z bnﬁ) => anbnﬁ.

“Airy function”



Critical phase of DAG enumeration

Asm = n(1+ pun/3), u € R,

n2ml e (3\Y3 3 s 1
#DAGpm ~ ————— (=) ([ —e"/3(H
’ (2n—m)! 4 (n) o’ ( 1o, E(y))7

wl—

Theorem (Ralaivaosaona, Rasendrahasina, Wagner °2020)

1
In the Dy, , model, the Hadamard product (H(y) Oyt ﬁ) can be
y

replaced by an integral of the reciprocal Airy function

C ico e Hs

R
omi | Al(—2/35) "



Phase transition in directed graphs



Directed graphs
Historical overview:

» Strong components are only isolated vertices and cycles below
m=n(l+ ,unfl/?’) [Luczak, Seierstad 09]

» Strong components have cubic kernels (for i1 € R)
[Goldschmidt, Stephenson *19]

Theorem (De Panafieu, D. ’2020)
Asm=n(1+ pun='/3), p — —o0,

( strong components of Dn,m ) ~ 1 _ 1
are isolated vertices and cycles 2 ’ /1"3 '

Proof.
» Transform the graphic GF of subcritical digraphs

> Repeat the idea of the previous proof



Critical phase of digraph enumeration

Definition. Elementary digraph contains only cycles and isolated
vertices as strong components.

Theorem (De Panafieu, D. ’2020+)
Asm=n(1 4 pun/3), u € R,

; 3T 1
P(Dy,m is elementary) ~ 67“3/6\/ —(H(y)®,_1 ,
2 ( TEE A+ Ey) +32F (y))

where

6r)!
> Ez) =30 (2r)|((3r)),25r32r

2/3
> HED) =06 (h %55 n) 7.

- k 13 . . 2
» G(\, «,x) :% 10 ( k’!‘) W < “Airy function




Conclusion
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Conclusion

1. Cubic kernels and their (rational) “compensation factors” play
central role in the phase transitions of
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Conclusion

1. Cubic kernels and their (rational) “compensation factors” play
central réle in the phase transitions of

» graphs (with or w/o degree constraints)
» 2-SAT
» digraphs and acyclic digraphs

2. Most easily seen as expansions in powers of || =3 for the
subcritical phase ;1 — —o0.

3. Transition curves when p € R. (in progress for 2-SAT)

Thank you.



