Subcritical phases of random structures

Sergey Dovgal

Based on joint works with
Élie De Panafieu and Vlady Ravelomanana
and including a very recent work of
Dimbinaina Ralaivaosaona, Vonjy Rasendrahasina and Stephan Wagner

Université Paris-13
Combinatorics and Interactions Seminar, IHP, 03/03/2020

Outline of the current talk

Part I:

- Graphs

Part II:

- Graphs with degree constraints
- 2-SAT
- Acyclic digraphs
- Digraphs

Part I. Phase transition in a random graph

Evolution of random graphs

Random graph G with n vertices and m edges.

- $m=o\left(n^{1 / 2}\right)$ isolated vertices and edges

Evolution of random graphs

Random graph G with n vertices and m edges.

- $m=o\left(n^{1 / 2}\right)$ isolated vertices and edges
- $m=n^{1 / 2} \log n$ isolated vertices and edges and paths of length 2

Evolution of random graphs

Random graph G with n vertices and m edges.

- $m=o\left(n^{1 / 2}\right)$ isolated vertices and edges
- $m=n^{1 / 2} \log n$ isolated vertices and edges and paths of length 2
- $m=n^{\frac{k-1}{k}} \log n$ components are trees of vertex size $1,2, \ldots, k+1$, every possible tree appears.

Evolution of random graphs

Random graph G with n vertices and m edges.

- $m=o\left(n^{1 / 2}\right)$ isolated vertices and edges
- $m=n^{1 / 2} \log n$ isolated vertices and edges and paths of length 2
- $m=n^{\frac{k-1}{k}} \log n$ components are trees of vertex size
$1,2, \ldots, k+1$, every possible tree appears.
- $m=\frac{1}{2} c n, c<1$ trees and several unicyclic components.

Maximal component size $O(\log n)$

Evolution of random graphs

Random graph G with n vertices and m edges.

- $m=o\left(n^{1 / 2}\right)$ isolated vertices and edges
- $m=n^{1 / 2} \log n$ isolated vertices and edges and paths of length 2
- $m=n^{\frac{k-1}{k}} \log n$ components are trees of vertex size
$1,2, \ldots, k+1$, every possible tree appears.
- $m=\frac{1}{2} c n, c<1$ trees and several unicyclic components.

Maximal component size $O(\log n)$

- $m=\frac{1}{2} n$ complex connected components appear (not trees, not unicycles). Maximal component size $\Theta\left(n^{2 / 3}\right)$

Evolution of random graphs

Random graph G with n vertices and m edges.

- $m=o\left(n^{1 / 2}\right)$ isolated vertices and edges
- $m=n^{1 / 2} \log n$ isolated vertices and edges and paths of length 2
- $m=n^{\frac{k-1}{k}} \log n$ components are trees of vertex size $1,2, \ldots, k+1$, every possible tree appears.
- $m=\frac{1}{2} c n, c<1$ trees and several unicyclic components. Maximal component size $O(\log n)$
- $m=\frac{1}{2} n$ complex connected components appear (not trees, not unicycles). Maximal component size $\Theta\left(n^{2 / 3}\right)$
- $m=\frac{1}{2} c n, c>1$ unique giant component of size $\Theta(n)$. Second largest component $O(\log n)$

Evolution of random graphs

Random graph G with n vertices and m edges.

- $m=o\left(n^{1 / 2}\right)$ isolated vertices and edges
- $m=n^{1 / 2} \log n$ isolated vertices and edges and paths of length 2
- $m=n^{\frac{k-1}{k}} \log n$ components are trees of vertex size $1,2, \ldots, k+1$, every possible tree appears.
- $m=\frac{1}{2} c n, c<1$ trees and several unicyclic components. Maximal component size $O(\log n)$
- $m=\frac{1}{2} n$ complex connected components appear (not trees, not unicycles). Maximal component size $\Theta\left(n^{2 / 3}\right)$
- $m=\frac{1}{2} c n, c>1$ unique giant component of size $\Theta(n)$. Second largest component $O(\log n)$
- $m=\frac{1}{2} n \log n$ graph becomes connected

Naming the phases

$m=c n, \quad c=\frac{1}{2}\left(1+\mu n^{-1 / 3}\right)$	
very subcritical	$c \leqslant \frac{1}{2}-\epsilon$
subcritical	$\mu \rightarrow-\infty$
critical	$\mu \in \mathbb{R}$
supercritical	$\mu \rightarrow+\infty$
very supercritical	$c \geqslant \frac{1}{2}+\epsilon$

Subcritical phase: a good starting point to understand other combinatorial structures.

Simplest phase transition ever

Theorem
Let $c>0$. As $n \rightarrow \infty$,

$$
c^{n} \rightarrow \begin{cases}0, & c<1-\epsilon \\ e^{x}, & c=1+\frac{x}{n} \\ \infty, & c>1+\epsilon\end{cases}
$$

Critical window: $c=1+\frac{x}{n}, x \in \mathbb{R}$.

Bonus: asymptotic behaviour when $x=x(n), x \rightarrow \infty$?

Phase transition in random graphs

In this talk, all the objects are labelled.
Theorem
Consider a random graph G with n vertices and m edges

$$
m=c n
$$

Then, as $n \rightarrow \infty$,
$\mathbb{P}(G$ consists of trees and unicycles $) \rightarrow \begin{cases}1, & c<\frac{1}{2}-\epsilon ; \\ f(\mu), & c=\frac{1}{2}\left(1+\mu n^{-1 / 3}\right) ; \\ 0, & c>\frac{1}{2}+\epsilon .\end{cases}$

Phase transition in random graphs

Theorem

Consider a random graph G with n vertices and m edges

$$
m=c n
$$

Then, as $n \rightarrow \infty$,
$\mathbb{P}(G$ consists of trees and unicycles $) \rightarrow \begin{cases}1, & c<\frac{1}{2}-\epsilon ; \\ f(\mu), & c=\frac{1}{2}\left(1+\mu n^{-1 / 3}\right) ; \\ 0, & c>\frac{1}{2}+\epsilon .\end{cases}$

- Let $T(z, w)$ and $U(z, w)$ be the EGF of unrooted trees and unicycles.
- Compute $n!\left[z^{n} w^{m}\right] e^{T(z, w)+U(z, w)}$ using saddle point method and divide by the total number of graphs.

Going into more details about $f(\mu)$

$\mathbb{P}(G$ consists of trees and unicycles $) \rightarrow \begin{cases}1, & c<\frac{1}{2}-\epsilon ; \\ f(\mu), & c=\frac{1}{2}\left(1+\mu n^{-1 / 3}\right) ; \\ 0, & c>\frac{1}{2}+\epsilon .\end{cases}$
$f(\mu)$ is completely known ([Flajolet, Janson, Knuth, Luczak, Pittel]):

$$
f(\mu)=\sqrt{\frac{2 \pi}{3}} e^{-\mu^{3} / 6} \sum_{k \geqslant 0} \frac{\left(\frac{1}{2} 3^{2 / 3} \mu\right)^{k}}{k!\Gamma\left(\frac{1}{2}-\frac{2}{3} k\right)}
$$

Asymptotics at the tails is also known:

$$
f(\mu) \sim \begin{cases}1-\frac{5}{24|\mu|^{3}}, & \mu \rightarrow-\infty \\ \frac{\sqrt{2 \pi}}{\Gamma\left(\frac{1}{4}\right)} \frac{e^{-\mu^{3} / 6}}{2^{1 / 4} \mu^{3 / 4}}, & \mu \rightarrow+\infty\end{cases}
$$

Going further down the rabbit hole about $f(\mu)$

When $\mu \rightarrow-\infty$,

$$
f(\mu) \sim 1-\frac{5}{24|\mu|^{3}}, \quad \mu \rightarrow-\infty
$$

Question. What is so special about $\frac{5}{24}$?
When $\mu \rightarrow+\infty$, only when $|\mu| \ll n^{1 / 12}$,

$$
f(\mu) \sim \frac{\sqrt{2 \pi}}{\Gamma\left(\frac{1}{4}\right)} \frac{e^{-\mu^{3} / 6}}{2^{1 / 4} \mu^{3 / 4}}, \quad \mu \rightarrow+\infty
$$

Question. What is so special about $n^{1 / 12}$?

Heuristical explanation of $\frac{5}{24}$

$$
\mathbb{P}(\text { only trees and unicycles }) \sim 1-\frac{5}{24|\mu|^{3}}, \quad \mu \rightarrow-\infty
$$

The first non-unicyclic components appearing are connected graphs with 2 cycles. Cubic multigraphs with 2 vertices with weights:

The sum of the "compensation factors"

$$
\frac{1}{2!}\left(\frac{1}{4}+\frac{1}{6}\right)=\frac{5}{24}
$$

Learning more about $\frac{5}{24}$

The (weighted) number of cubic multigraphs with $2 r$ vertices and $3 r$ edges is

$$
e_{r}=\frac{(6 r)!}{(2 r)!(3 r)!2^{5 r} 3^{2 r}}, \quad e_{1}=\frac{5}{24}
$$

Theorem
As $m=\frac{1}{2} n, n \rightarrow \infty$,

$$
\mathbb{P}(\text { complex component has excess } r) \sim \sqrt{\frac{2 \pi}{3}} \cdot \frac{e_{r}}{3^{r} \Gamma\left(r+\frac{1}{2}\right)}
$$

Moral. Subcritical phase is helpful for understanding of the combinatorics inside the window.

Heuristical explanation of $|\mu| \ll n^{1 / 12}$

As $m=\frac{n}{2}\left(1+\mu n^{-1 / 3}\right)$,
$\mathbb{P}(G$ consists of trees and unicycles $)=f(\mu)+O\left(\mu^{4} n^{-1 / 3}\right)$
the error term $O\left(\mu^{4} n^{-1 / 3}\right)$ corresponding to non-cubic kernels.

When $\mu=\Theta\left(n^{1 / 12}\right)$, kernels with degrees $\geqslant 4$ appear with positive probability.

Part II. Beyond random graphs

Graph-like combinatorial structures

- Graphs with degree constraints
- 2-SAT
- Acyclic digraphs
- Digraphs

Graphs with allowed degrees from a given set

Graphs with degree constraints

[De Panafieu, Ramos], [D., Ravelomanana]
Allowed degrees: $\Delta=\left\{\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \delta_{5}, \ldots\right\}, \quad \delta_{1}=1$ or $\delta_{2}=1$.

Theorem (D., Ravelomanana '2018)
As $n \rightarrow \infty$, for $m=c n$,
$\mathbb{P}\left(G_{\Delta}\right.$ consists of trees and unicycles $) \rightarrow \begin{cases}1, & c<\alpha_{\Delta}-\epsilon ; \\ f_{\Delta}(\mu), & c=\alpha_{\Delta}\left(1+\mu n^{-1 / 3}\right) ; \\ 0, & c>\alpha_{\Delta}+\epsilon .\end{cases}$
$f_{\Delta}(\mu)=f\left(C_{\Delta} \mu\right)$, where α_{Δ} and C_{Δ} are explicit.

Graphs with degree constraints

[De Panafieu, Ramos], [D., Ravelomanana]
Theorem (D., Ravelomanana '2018)
As $n \rightarrow \infty$, for $m=c n$,
$\mathbb{P}\left(G_{\Delta}\right.$ consists of trees and unicycles $) \rightarrow \begin{cases}1, & c<\alpha_{\Delta}-\epsilon ; \\ f_{\Delta}(\mu), & c=\alpha_{\Delta}\left(1+\mu n^{-1 / 3}\right) ; \\ 0, & c>\alpha_{\Delta}+\epsilon .\end{cases}$
$f_{\Delta}(\mu)=f\left(C_{\Delta} \mu\right)$, where α_{Δ} and C_{Δ} are explicit.
Proof.

- Let $T_{\Delta}(z, w)$ and $U_{\Delta}(z, w)$ be the EGF of unrooted trees and unicycles with degree constraints.
- Compute $n!\left[z^{n} w^{m}\right] e^{T_{\Delta}(z, w)+U_{\Delta}(z, w)}$ and divide by total number of graphs (given by [De Panafieu, Ramos])

Subcritical phase of 2-SAT

2-SAT: Some background

Theorem (Bollobas, Borgs, Chayes, Kim, Wilson '2001)
Consider a random 2-CNF $F_{n, m}$ with n variables and $m=c n$ clauses.

$$
\mathbb{P}\left(F_{n, m} \text { is } S A T\right) \rightarrow \begin{cases}1-\Theta\left(|\mu|^{-3}\right), & \mu \rightarrow-\infty \\ \Theta(1), & c=1+\mu n^{-1 / 3} \\ \exp \left(-\Theta\left(|\mu|^{3}\right)\right), & \mu \rightarrow \infty\end{cases}
$$

Theorem (Kim '2008)

$$
\mathbb{P}\left(F_{n, m} \text { is } S A T\right) \sim 1-\frac{1}{16|\mu|^{3}}, \quad \mu \rightarrow-\infty
$$

Question. Where does $\frac{1}{16}$ come from?
Question. What is the rôle of the cubic kernels?

Analytic combinatorics \oslash 2-SAT

- A 2-CNF is represented as an implication digraph.
- Formula is UNSAT if and only if $\exists x: x \rightsquigarrow \bar{x} \rightsquigarrow x$.

Major obstacle. No "tree-unicycle"-style decomposition available. Contradictory components are not disconnected.

First idea. Inclusion-exclusion using contradictory patterns

Understanding $\frac{1}{16}$ and cubic kernels of 2-SAT

Theorem (D. '2019)

As $m=c n, c=1+\mu n^{-1 / 3}, \mu \rightarrow-\infty$ slowly enough, then cubic contradictory kernel of excess r appear with probability $C_{r}|\mu|^{-3 r}$.

- C_{r} is equal to the sum $\sum_{M} 2^{-r} \varkappa(M) /(2 r)$! taken over all possible labelled cubic contradictory components of excess r;
- $\varkappa()=\frac{1}{2} \cdot \frac{1}{2}$ because of two double edges $x \rightarrow \bar{x}, y \rightarrow \bar{y}$.

Corollary

$$
\mathbb{P}\left(F_{n, m} \text { is } S A T\right) \sim 1-\frac{1}{16|\mu|^{3}}
$$

Open problem. $\mathbb{P}\left(F_{n, m}\right.$ is SAT $)=$? when $\mu \in \mathbb{R}$

A systematic approach to inclusion-exclusion

The philosophy of Analytic Combinatorics

Analytic Combinatorics $=$ Symbolic Method + Asymptotic Analysis

The philosophy of the symbolic method. (Bergeron, Labelle, Leroux).
Combinatorial decomposition \Rightarrow Functional equation

Follow-up: asymptotic analysis. (Flajolet, Odlyzko, ...).

$$
\text { Equation } \Rightarrow \text { GF expansion } \Rightarrow \text { Asymptotics }
$$

Classical Inclusion-Exclusion principle

Additional variables mark special vertices or groups of vertices

$$
A(z, \mathrm{w}, \mathrm{u})=\sum_{n, k, r} a_{n, k, r} \mathrm{w}^{k} \mathrm{u}^{r} \frac{z^{n}}{n!}
$$

Example:

- n vertices
$a_{n, k, r}=\#_{\text {of }}$ graphs with
- kedges
- r isolated vertices

$$
B(z, \mathrm{w}, \mathrm{u}):=A(z, \mathrm{w}, \mathrm{u}+1)=\sum_{n, k, r} b_{n, k, r} \mathrm{w}^{k} \mathrm{u}^{r} \frac{z^{n}}{n!}
$$

- n vertices
$b_{n, k, r}=\#_{\text {of }}$ graphs with
- kedges
- r distinguished isolated vertices

Graphic convolution rule

$$
A(z)=a_{0}+\frac{a_{1} z}{1!2^{\binom{1}{2}}}+\frac{a_{2} z^{2}}{2!2^{\binom{2}{2}}+\ldots, \quad B(z)=b_{0}+\frac{b_{1} z}{1!2^{\binom{1}{2}}}+\frac{b_{2} z^{2}}{2!2^{\binom{2}{2}}}+\ldots . . .}
$$

coefficient level
$c_{n}:=\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k} 2^{k(n-k)} \quad C(z)=A(z) \cdot B(z)$

Digraph enumeration theorem and its applications

Enumerating digraphs with given SCC

Theorem (Robinson '1973; De Panafieu, D. '2019)
Graphic GF for digraphs with strongly connected components from given family SCC is given by

$$
\widehat{D}(z, w)=\frac{1}{e^{-S C C(z, w)} \odot M G(z,-w)}
$$

where

- $M G(z, w)$ is the EGF of multigraphs;
- \odot is the exponential Hadamard product

$$
\sum_{n \geqslant 0} a_{n} \frac{z^{n}}{n!} \odot \sum_{n \geqslant 0} b_{n} \frac{z^{n}}{n!}:=\sum_{n \geqslant 0} a_{n} b_{n} \frac{z^{n}}{n!}
$$

- Graphic GF is defined by

$$
\widehat{F}(z, w)=\sum_{n \geqslant 0} f_{n}(w) \frac{z^{n}}{e^{\frac{n^{2}}{2} w} n!}
$$

Two main applications of enumeration theorem

Corollary
Graphic GF for acyclic digraphs is

$$
\widehat{D A G}(z, w)=\frac{1}{M G(-z,-w)}
$$

Corollary
Graphic GF for elementary digraphs (strong components are only isolated vertices and cycles) is

$$
\widehat{S}(z, w)=\frac{1}{M G(-z,-w)+z w \partial_{z} M G(-z,-w)}
$$

Asymptotics of directed acyclic graphs

Asymptotics of directed acyclic graphs

Historical overview:

- When $m=c n^{2}$, [Bender, Richmond, Robinson, Wormald '1984]

Theorem ([Ralaivaosaona, Rasendrahasina, Wagner '20+], [DP., D. '20+]) As $m=c n, c<1, n \rightarrow \infty$

$$
\mathbb{P}(\text { digraph is acyclic }) \rightarrow 1-c
$$

Question. What happens when $c=1$?

Transition window. $\mu \in \mathbb{R}$.
Answered by Ralaivaosaona, Rasendrahasina, and Wagner: see AofA'2020!

Subcritical phase of DAG enumeration

Theorem (De Panafieu, D. FPSAC'2020)
As $m=n\left(1+\mu n^{-1 / 3}\right), \mu \rightarrow-\infty$ sufficiently slowly,

Proof.

$$
\mathbb{P}\left(D_{n, m} \text { is acyclic }\right) \sim|\mu| n^{-1 / 3} \cdot \sum_{r \geqslant 0} \frac{C_{r}}{|\mu|^{3 r}}
$$

- Graphic GF for acyclic digraphs is $\frac{1}{M G(-z,-w)}$
- Write $\mathcal{M} G(z, w)$ in the product form (trees, unicycles and complex components)
- Convert graphic GF into EGF + additional combinatorial magic

Critical phase of DAG enumeration

Theorem (De Panafieu, D. FPSAC'2020)
As $m=n\left(1+\mu n^{-1 / 3}\right), \mu \in \mathbb{R}$,

$$
\# D A G_{n, m} \sim \frac{n!^{2} m!}{(2 n-m)!} \frac{e^{2 n}}{4}\left(\frac{3}{n}\right)^{4 / 3} \sqrt{\frac{3}{2 \pi}} e^{\mu^{3} / 3}\left(H(y) \odot_{y=\frac{1}{3}} \frac{1}{E(y)}\right)
$$

where

- $E(z):=\sum_{r \geqslant 0} \frac{(6 r)!}{(2 r)!(3 r)!2^{5 r} 3^{2 r}} z^{r}$
- $H(z):=\sum_{r \geqslant 0} G\left(\frac{3}{2}, \frac{3 r}{2}-\frac{1}{4},-\frac{3^{2 / 3}}{2} \mu\right) z^{r}$,
- $G(\lambda, \alpha, x)=\frac{1}{\lambda} \sum_{k \geqslant 0} \frac{(-x)^{k}}{k!} \frac{1}{\Gamma\left(\frac{\lambda+\alpha-k-1}{\lambda}\right)}, \quad \leftarrow$ "Airy function"
- $\left(\sum a_{n} \frac{z^{n}}{n!}\right) \odot_{z=x}\left(\sum b_{n} \frac{z^{n}}{n!}\right):=\sum a_{n} b_{n} \frac{x^{n}}{n!}$.

Critical phase of DAG enumeration

As $m=n\left(1+\mu n^{-1 / 3}\right), \mu \in \mathbb{R}$,

$$
\# \mathrm{DAG}_{n, m} \sim \frac{n!^{2} m!}{(2 n-m)!} \frac{e^{2 n}}{4}\left(\frac{3}{n}\right)^{4 / 3} \sqrt{\frac{3}{2 \pi}} e^{\mu^{3} / 3}\left(H(y) \odot_{y=\frac{1}{3}} \frac{1}{E(y)}\right)
$$

Theorem (Ralaivaosaona, Rasendrahasina, Wagner '2020) In the $D_{n, p}$ model, the Hadamard product $\left(H(y) \odot_{y=\frac{1}{3}} \frac{1}{E(y)}\right)$ can be replaced by an integral of the reciprocal Airy function

$$
\frac{C}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{e^{-\mu s}}{\operatorname{Ai}\left(-2^{1 / 3} s\right)} d s
$$

Phase transition in directed graphs

Directed graphs

Historical overview:

- Strong components are only isolated vertices and cycles below $m=n\left(1+\mu n^{-1 / 3}\right)$ [Łuczak, Seierstad '09]
- Strong components have cubic kernels (for $\mu \in \mathbb{R}$) [Goldschmidt, Stephenson '19]

Theorem (De Panafieu, D. '2020)
As $m=n\left(1+\mu n^{-1 / 3}\right), \mu \rightarrow-\infty$,

$$
\mathbb{P}\left(\begin{array}{c}
\left.\begin{array}{c}
\text { strong components of } D_{n, m} \\
\text { are isolated vertices and cycles }
\end{array}\right) \sim 1-\frac{1}{2|\mu|^{3}} .
\end{array}\right.
$$

Proof.

- Transform the graphic GF of subcritical digraphs
- Repeat the idea of the previous proof

Critical phase of digraph enumeration

Definition. Elementary digraph contains only cycles and isolated vertices as strong components.
Theorem (De Panafieu, D. '2020+)
As $m=n\left(1+\mu n^{-1 / 3}\right), \mu \in \mathbb{R}$,
$\mathbb{P}\left(D_{n, m}\right.$ is elementary $) \sim e^{-\mu^{3} / 6} \sqrt{\frac{3 \pi}{2}}\left(H(y) \odot_{y=\frac{1}{3}} \frac{1}{\frac{y}{2}+E(y)+3 y^{2} E^{\prime}(y)}\right)$,
where

- $E(z):=\sum_{r \geqslant 0} \frac{(6 r)!}{(2 r)!(3 r)!2^{5} r 3^{2 r}} z^{r}$
- $H(z):=\sum_{r \geqslant 0} G\left(\frac{3}{2}, \frac{3 r}{2}-\frac{1}{4},-\frac{3^{2 / 3}}{2} \mu\right) z^{r}$,
- $G(\lambda, \alpha, x)=\frac{1}{\lambda} \sum_{k \geqslant 0} \frac{(-x)^{k}}{k!} \frac{1}{\Gamma\left(\frac{\lambda+\alpha-k-1}{\lambda}\right)} . \quad \leftarrow \quad$ "Airy function"

Conclusion

Conclusion

1. Cubic kernels and their (rational) "compensation factors" play central rôle in the phase transitions of

- graphs (with or w/o degree constraints)
- 2-SAT
- digraphs and acyclic digraphs

2. Most easily seen as expansions in powers of $|\mu|^{-3}$ for the subcritical phase $\mu \rightarrow-\infty$.
3. Transition curves when $\mu \in \mathbb{R}$. (in progress for 2-SAT)

Conclusion

1. Cubic kernels and their (rational) "compensation factors" play central rôle in the phase transitions of

- graphs (with or w/o degree constraints)
- 2-SAT
- digraphs and acyclic digraphs

2. Most easily seen as expansions in powers of $|\mu|^{-3}$ for the subcritical phase $\mu \rightarrow-\infty$.
3. Transition curves when $\mu \in \mathbb{R}$. (in progress for 2-SAT)

Thank you.

