
Multiparametric Boltzmann sampling and
applications

Sergey Dovgal
LIPN, Université Paris 13

LINCS, 13/03/2019

Introduction

Motivations for random sampling

Let X ∼ P, given implicit description of P, sample X

▶ Understand typical properties of a random structure
▶ Randomness for security
▶ Hashing algorithms
▶ Link between Constraint Satisfiability Problems (CSP) and

random sampling
▶ Sampling vs. optimisation viewpoint: a large concentrated set

of (1− ε)-optimal points is better than an isolated global
optima

Outline of the current talk

Multiparametric Boltzmann sampling︸ ︷︷ ︸
Part I

and applications︸ ︷︷ ︸
Part II

Part I. Generating functions and Boltzmann samplers

Generating functions and the symbolic method

Consider an unambiguous context-free grammar

Si →
∑
j

Tij(S1, . . . , Sn, •)

▶ • is the terminal symbol
▶ Tij are possible transitions

The number an,i of words of length n produced by Si has a
generating function

Si(z) =
∑
n≥0

an,izn

which satisfies

Si(z) =
∑
j

Tij(S1(z), . . . , Sn(z), z)

Multivariate generating functions

If a context-free grammar has several terminals •1, •2, •3, •4

Si →
∑
j

Tij(S1, . . . , Sn, •1, •2, •3, •4)

The number an1,n2,n3,n4,i of words containing nk terminals of the
color k produced by Si has a generating function

Si(z1, z2, z3, z4) =
∑
n≥0

an1,n2,n3,n4,iz
n1
1 zn22 zn33 zn44

which satisfies a system of polynomial equations

Si(z) =
∑
j

Tij(S1(z), . . . , Sn(z), z1, z2, z3, z4)

Why context-free grammars and generating functions?

▶ Non-algebraic functional equations are possible, we don’t focus
on them in this talk

Why generating functions?
Tree-like structures

Why generating functions?
Concurrent systems

Why generating functions?
Graphs (several models of randomness)

Why generating functions?
Integer partitions

Why generating functions?
RNA sequences

Why generating functions?
Queueing networks

Why generating functions?
Lambda terms

Why generating functions?
Patterns in words

Why generating functions?
Stay tuned for detailed explanations

Random sampling

Si →
∑
j

Tij(S1, . . . , Sn, •1, •2, •3, •d)

▶ Problem 1: Given a positive integer n, sample a word w of
length n from a context-free grammar uniformly at random;

▶ Problem 2: Given positive integers (n1, n2, . . . , nd), sample a
word w with nk literals of color k from a context-free grammar
uniformly at random;

‼ The second problem is known to be #P-complete, i.e. higher in the
complexity hierarchy than NP-complete. ‼

Exact sampling is #P-complete: reduction from #2-SAT
[Welsh, Gale] + [Jerrum, Valiant, Vazirani] + [folklore?]

Consider a 2-CNF formula

F = (x1 ∨ x2)
c1

(x1 ∨ x4)
c2

(x2 ∨ x3)
c3

(x2 ∨ x4)
c4

(x3 ∨ x4)
c5

Construct a system of algebraic equations

A(c1, . . . , c5) = (x1 + x1) . . . (x4 + x4)(1 + c1) . . . (1 + c5)

where

x1 = c1c2, x1 = 1, x2 = 1, x2 = c1c3c4, x3 = c3c5, · · ·

Then, using the notation [zn]F(z) = n-th coefficient of F(z),

#2SAT(F) = [c21c
2
2 . . . c

2
5]A(c1, . . . , c5)

Relaxation of the exact sampling: Boltzmann distribution

Boltzmann distribution

Let S(z) be the generating function of the language S :

S(z) =
∑
n≥0

anzn

Consider a distribution Pz on words from S :
▶ conditioned on word length n, the distribution is uniform
▶ and the distribution of the length follows

Pz(|w| = n) =
anzn

S(z)

▶ Problem 3: given an unambiguous context-free grammar S and
z > 0, sample a word from the Boltzmann distribution

Boltzmann sampler

Si →
∑
j

Tij(S1, . . . , Sn, •)

Algorithm 1: Boltzmann sampler for context-free grammars
Data: real value z > 0
Result: Random word from Boltzmann distribution
Function ΓSi(z):

if Si is terminal then
return • ;

for all j do

pj :=
Tij(S1(z), . . . , Sn(z), z)

Si(z)
;

Choose the transition Tij with probability pj ;
A1A2 . . .Ak := Tij ;
return ΓA1(z)ΓA2(z) · · ·ΓAk(z) ;

Multiparametric Boltzmann sampler

Si →
∑
j

Tij(S1, . . . , Sn, •1, •2, · · · , •ℓ)

Algorithm 2: Boltzmann sampler for context-free grammars
Data: real values z1, z2, · · · , zℓ > 0
Result: Random word from Boltzmann distribution
Function ΓSi(z):

if Si is terminal •k then
return •k ;

for all j do

pj :=
Tij(S1(z), . . . , Sn(z), z1, z2, · · · , zℓ)

Si(z)
;

Choose the transition Tij with probability pj ;
A1A2 . . .Ak := Tij ;
return ΓA1(z)ΓA2(z) · · ·ΓAk(z) ;

Properties of the Boltzmann sampler
[Duchon, Flajolet, Louchard, Schaeffer], [Bodini, Ponty]

1. Theorem 1: Boltzmann sampler returns a word from the
Boltzmann distribution

2. Theorem 2: The expected number of terminals •k is given by

Ez[#of •k in a random word w] = zk
∂
∂zk

S(z)
S(z)

3. Theorem 3: In strongly connected grammars, if

Ez[#of •k] = nk = αkn, n → ∞,

then, under Boltzmann distribution with parameter z,[
#of •k in w

∣∣∣ |w| = n
]

d−→
n→∞

N (αkn,Ckn)

Tuning of the multiparametric Boltzmann sampler

Handles z ⇒ Expectations Enk

z1

z2

zℓ

En1

En2

Enℓ

‼ The handles cannot be tuned independently ‼

Tuning of the multiparametric Boltzmann sampler
[Bendkowski, Bodini, D.]

Theorem. Let the expected values n1, . . . , nℓ of the terminals
•1, •2, · · · , •ℓ be given. Let Sk(z) satisfy

S1 = Φ1(S1, . . . , Sn, z),
· · ·

Sn = Φn(S1, . . . , Sn, z).

The tuning vector (z1, . . . , zℓ) = (ex1 , . . . , exℓ) can be obtained by
solving a convex optimisation problem

S− n1x1 − n2x2 − . . .− nℓxℓ → min
(S1,··· ,Sn,x1,··· ,xℓ)

,

S1 ≥ logΦ1(eS1 , . . . , eSn , ex1 , . . . , exℓ),

· · ·
Sn ≥ logΦn(eS1 , . . . , eSn , ex1 , . . . , exℓ).

Remark about practical implementation
[Domahidi, Chu, Boyd], [Grant, Boyd, Ye]

This problem is convex:

S− n1x1 − n2x2 − . . .− nℓxℓ → min
(S1,··· ,Sn,x1,··· ,xℓ)

,

S1 ≥ logΦ1(eS1 , . . . , eSn , ex1 , . . . , exℓ),

· · ·
Sn ≥ logΦn(eS1 , . . . , eSn , ex1 , . . . , exℓ).

‼ In general, it is difficult to solve black-box convex problems fast
but in this case we can ‼
DCP principle. If the optimisation problem can be presented as a
composition of “atomic” convex problems, then it can be
transformed into a standard form and quickly solved.

Part II. Applications

Boltzmann Brain + Paganini
Grammar example: Motzkin trees with non-uniform weights

M
= z +

z2

M

30%

+
z2

M M

M(z) = z+ uz2M(z) + z2M2(z)

Tiling example, practical benchmark

Tiling example, practical benchmark

Tilings 9× n form a regular grammar with
▶ 1022 tuning parameters
▶ 19k states
▶ 357k transitions

We tune for a uniform distribution for tile frequency.
This results in few hours of tuning.

Applications

1. Software testing using lambda calculus

2. Non-uniform sparse random graphs

3. Belief propagation for RNA design

4. Bose–Einstein condensate in quantum harmonic oscillator

5. Multiclass queueing networks

6. Combinatorial learning and Maximum Likelihood

Application 1. Software testing

Application 1: software testing

Goal: finding bugs in optimising compilers using corner-case
random sampling of simply typed lambda terms

Application 1: software testing

▶ Plain lambda terms:
Motzkin trees whose leaves
contain non-negative
integers.

▶ Closed lambda terms:
Plane lambda terms whose
leaf values do not exceed
their unary height.

▶ Holy grail: simply typed
lambda terms (not achived
yet)

Application 1: software testing

Tuning uniform leaf index frequencies from 0 to 8:

Can be also tuned:
▶ number of atomic nodes of distinguished colors
▶ number of redexes (i.e. patterns necessary to perform a

computation step in lambda calculus)
▶ number of head abstractions
▶ number of closed subterms
▶ number of any tree-like patterns

Application 2. Non-uniform sparse random graphs

Application 2. Non-uniform sparse random graphs
[de Panafieu, Ramos], [D., Ravelomanana]

Random labeled graph from G26,30,∆ with the set of degree
constraints ∆ = {1, 2, 3, 5, 7}

1

2

3

4

5

6

78

9 10

11
12

13

14

1516

17

18

19

20

21

22

23 24

25

26

Theorem [D., Ravelomanana]. Phase transition of the complex
component appearance is shifted in the model with degree
constraints.

Application 2. Non-uniform sparse random graphs

▶ Graph decomposition: trees, unicycles, finite number of
complex components w.h.p.

▶ Generating function of graphs near the point of phase
transition can be written as a product of “atomic” generating
functions

▶ Default behaviours near the phase transition:
▶ dangling tree size Θ(n1/3),
▶ 2-core path length Θ(n1/3),
▶ number of trees,
▶ number of unicycles,
▶ frequencies of vertices with given degrees,
▶ etc.

▶ Many parameters can be tweaked within Boltzmann
distribution yielding unusual graph distributions

Application 3. Belief propagation for RNA design

Application 3: Belief propagation for RNA design
[Hammer, Ponty, Wang, Will], [Ponty, Will: personal communication]

▶ Problem: given the set of allowed
secondary structures (s1, · · · , sk),
sample uniformly at random RNA
satisfying each of those structures.

▶ Lemma: the problem is equivalent
to enumerating independent sets in
bipartite graphs

Application 3: Belief propagation for RNA design
image taken from [Hammer, Ponty, Wang, Will]

Step 1: construct a graph based on secondary structures

Application 3: Belief propagation for RNA design
image taken from [Hammer, Ponty, Wang, Will]

Step 2: construct a suitable tree decomposition and a context-free
grammar

m{uge}→{pgu}(xg, xu) =
∑

allowed xe

(
m{uea}→{uge}(xu, xe)

) (
m{es}→{uge}(xe)

)

Application 3: Belief propagation for RNA design
image taken from [Hammer, Ponty, Wang, Will]

Step 3: add the parameters
▶ each secondary structure energy (marked by uc)
▶ letter frequency

mu→v(x) =
∑
x̃

∏
w→u

mw→u(x, x̃)× u−energy of added edge
c

Application 3: Belief propagation for RNA design
[Ponty, Will: personal communication]

Conclusion:
▶ The energies of the secondary structures and letter frequencies

can be tuned
▶ This can be subsequently refined to energies of adjacent pairs

in RNA sequence, triples, etc.
▶ Empirically observed energy distributions are Gaussian

Application 4: Bose–Einstein condensate in quantum harmonic
oscillator

Bianconi–Barabási model
An evolving network can be compared to a diluted gas at low temperature

Bose–Einstein condensation in evolving networks
Bianconi–Barabási model

Bose gas network evolution
temperature temperature

energy energy
particle half-edge

number of energy levels ⩽ number of nodes
Bose–Einstein condensation topological phase transition

In this model, the number of par-
ticles on the energy level
ε follows the Bose statistics n(ε) =

1
eβ(ε−µ)−1

which also represents
the number of edges linking to
nodes with energy ε.

Application 4: Bose–Einstein condensate in quantum
harmonic oscillator
[Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]

Integer partitions ↔ 1-dimensional quantum oscillator

partitions = multiset(N) = multiset(multiset(1))

Application 4: Bose–Einstein condensate in quantum
harmonic oscillator
[Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]

Coloured partitions ↔ d-dimensional quantum oscillator

coloured partitions = multiset
(
N+ d− 1

N

)
= MSet(MSet(d · 1))

Application 4: Bose–Einstein condensate in quantum
harmonic oscillator
[Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]

Coloured partitions ↔ d-dimensional quantum oscillator

Weighted partition Random particle assembly
Sum of numbers Total energy

Number of colours Dimension (d)
Row of Young table Particle
Number of rows Number of particles

Number of squares in the row Energy of a particle (λ)
Partition limit shape Bose–Einstein condensation(d+λ−1

λ

)
Number of particle states

Problem: generate random assemblies with given
numbers of colours (n1, n2, . . . , nd).

Application 4: Bose–Einstein condensate in quantum
harmonic oscillator
[Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]

Challenge: express the inner generating function

MSET(•1, •2, · · · , •ℓ) =
1

1− z1
· 1

1− z2
· · · · · 1

1− zℓ
− 1

in DCP rules using only polynomial number of additions and
multiplications.
Solution: convexity proof of length Θ(ℓ2) using dynamic
programming.

Application 5: Multiclass queueing networks

Application 5: Multiclass queueing networks

Gordon–Newell network: Markov
chain, each node is a queue, service time
of the queue vi is ∼ Exp(µi).

Theorem (Gordon, Newell). Stationary distribution of the
Gordon–Newell network is Boltzmann with multivariate generating
function

G(z1, z2, · · · zℓ) =
1

1− π1
z1
µ1

· 1

1− π2
z2
µ2

· · · · · 1

1− πℓ
zℓ
µℓ

,

where

πi =

ℓ∑
j=1

pjiπj,
ℓ∑

i=1

πi = 1

Application 5: Multiclass queueing networks

Multiclass generalisation: zi correspond to the queues, uj
correspond to different types of clients

G(z1, z2, . . . , zℓ, u1, u2, · · · uM) =
ℓ∏

i=1

1

1− zi
∑M

j=1 ρijuj

Boltzmann tuning: configure the ex-
pected proportions of clients of different
types among the queues and the expected
lengths of each queue.

Application 6: Combinatorial learning

Application 6: Combinatorial learning
Example: hidden parameter estimation

Maximum likelihood estimate for Boltzmann distribution.

L(X1, . . . ,Xn|z) =
n∑

i=1

logP(|Xi| = n | z) = log aniz
ni

F(z)

=
∑

log ani +
∑

ni log z− n log F(z) → max
z

We obtain the tuning equation:∑n
i=1 ni
n

= z
F ′(z)
F(z)

▶ Hidden parameter estimation. Objects are sampled from
multivariate Boltzmann distribution z = (z1, . . . , zk). We
observe only a part of the parameters (n∗1, . . . , n

∗
ℓ). Estimate z.

Application 6: Combinatorial learning
Hidden parameter estimation

▶ Hidden parameter estimation. Objects are sampled from
multivariate Boltzmann distribution z = (z, u). We observe
only the parameter n corresponding to z. Estimate z = (z, u).

▶ Maximising the log-likelihood we obtain:

L(X1, . . . ,Xn | z, u) =
∑
i

log
∑

k ani,kz
niuk

F(z, u)
→ max

z,u

▶ Multiparametric #P-complete problem:

n∑
i=1

ni − n
∂zF
F

= 0

n∑
i=1

∂u[zni]F(z, u)
[zni]F(z, u)

− n
∂uF(z, u)
F(z, u)

= 0

Application 6: Combinatorial learning
Hidden parameter estimation

▶ Multiparametric #P-complete problem:

n∑
i=1

ni − n
∂zF
F

= 0

n∑
i=1

∂u[zni]F(z, u)
[zni]F(z, u)

− n
∂uF(z, u)
F(z, u)

= 0

▶ Boltzmann relaxation:

∂u[zni]F(z, u)
[zni]F(z, u)

≈ ∂uF(z∗(ni), u)
F(z∗(ni), u)

The parameter z∗(ni) can be found by the tuning procedure

Conclusion

Conclusion

1. Boltzmann sampler is a fundamental tool for multiparametric
sampling. The tuning procedure is very natural in many
contexts.

2. Context-free unambiguous grammars are ubiquitous in many
areas of mathematics, physics and computer science.

3. The tuning algorithm can be interpreted in terms of Maximum
Likelihood Estimation for combinatorial objects

Thank you for your attention

