Multiparametric Boltzmann sampling and applications

Sergey Dovgal
LIPN, Université Paris 13

LINCS, 13/03/2019

Introduction

Motivations for random sampling

Let $X \sim \mathbb{P}$, given implicit description of \mathbb{P}, sample X

- Understand typical properties of a random structure
- Randomness for security
- Hashing algorithms
- Link between Constraint Satisfiability Problems (CSP) and random sampling
- Sampling vs. optimisation viewpoint: a large concentrated set of $(1-\varepsilon)$-optimal points is better than an isolated global optima

Outline of the current talk

$\underbrace{\text { Multiparametric Boltzmann sampling }}_{\text {Part I }}$ and $\underbrace{\text { applications }}_{\text {Part II }}$

Part I. Generating functions and Boltzmann samplers

Generating functions and the symbolic method

Consider an unambiguous context-free grammar

$$
S_{i} \rightarrow \sum_{j} T_{i j}\left(S_{1}, \ldots, S_{n}, \bullet\right)
$$

- • is the terminal symbol
- $T_{i j}$ are possible transitions

The number $a_{n, i}$ of words of length n produced by S_{i} has a generating function

$$
S_{i}(z)=\sum_{n \geq 0} a_{n, i} z^{n}
$$

which satisfies

$$
S_{i}(z)=\sum_{j} T_{i j}\left(S_{1}(z), \ldots, S_{n}(z), z\right)
$$

Multivariate generating functions

If a context-free grammar has several terminals $\bullet_{1}, \bullet_{2}, \bullet_{3}, \bullet_{4}$

$$
S_{i} \rightarrow \sum_{j} T_{i j}\left(S_{1}, \ldots, S_{n}, \bullet_{1}, \bullet_{2}, \bullet_{3}, \bullet_{4}\right)
$$

The number $a_{n_{1}, n_{2}, n_{3}, n_{4}, i}$ of words containing n_{k} terminals of the color k produced by S_{i} has a generating function

$$
S_{i}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\sum_{n \geq 0} a_{n_{1}, n_{2}, n_{3}, n_{4}, i} z_{1}^{n_{1}} z_{2}^{n_{2}} z_{3}^{n_{3}} z_{4}^{n_{4}}
$$

which satisfies a system of polynomial equations

$$
S_{i}(\mathbf{z})=\sum_{j} T_{i j}\left(S_{1}(\mathbf{z}), \ldots, S_{n}(\mathbf{z}), z_{1}, z_{2}, z_{3}, z_{4}\right)
$$

Why context-free grammars and generating functions?

- Non-algebraic functional equations are possible, we don't focus on them in this talk

Why generating functions?
Tree-like structures

Why generating functions?
Concurrent systems

Why generating functions?

Graphs (several models of randomness)

Why generating functions?
Integer partitions

$$
16=1+3+3+4+5
$$

Why generating functions? RNA sequences

Why generating functions?

Queueing networks

Why generating functions?

Lambda terms

Why generating functions?
Patterns in words

Useful for the analysis of tree-like structures: unions, products, sequences, Hankel contours

Why generating functions?

Stay tuned for detailed explanations

Random sampling

$$
S_{i} \rightarrow \sum_{j} T_{i j}\left(S_{1}, \ldots, S_{n}, \bullet_{1}, \bullet_{2}, \bullet_{3}, \bullet_{d}\right)
$$

- Problem 1: Given a positive integer n, sample a word w of length n from a context-free grammar uniformly at random;
- Problem 2: Given positive integers $\left(n_{1}, n_{2}, \ldots, n_{d}\right)$, sample a word w with n_{k} literals of color k from a context-free grammar uniformly at random;
!! The second problem is known to be \# P-complete, i.e. higher in the complexity hierarchy than NP-complete. !!

Exact sampling is \#P-complete: reduction from \#2-SAT [Welsh, Gale] + [Jerrum, Valiant, Vazirani] + [folklore?]

Consider a 2-CNF formula

$$
F=\underbrace{\left(x_{1} \vee \bar{x}_{2}\right)}_{c_{1}} \underbrace{\left(x_{1} \vee \bar{x}_{4}\right)}_{c_{2}} \underbrace{\left(\bar{x}_{2} \vee \bar{x}_{3}\right)}_{c_{3}} c_{4}^{\left(\bar{x}_{2} \vee \bar{x}_{4}\right)} c_{5}\left(\bar{x}_{3} \vee x_{4}\right)
$$

Construct a system of algebraic equations

$$
A\left(c_{1}, \ldots, c_{5}\right)=\left(x_{1}+\bar{x}_{1}\right) \ldots\left(x_{4}+\bar{x}_{4}\right)\left(1+c_{1}\right) \ldots\left(1+c_{5}\right)
$$

where

$$
x_{1}=c_{1} c_{2}, \quad \bar{x}_{1}=1, \quad x_{2}=1, \quad \bar{x}_{2}=c_{1} c_{3} c_{4}, \quad \bar{x}_{3}=c_{3} c_{5}, \quad \cdots
$$

Then, using the notation $\left[\mathbf{z}^{\boldsymbol{n}}\right] F(\mathbf{z})=\boldsymbol{n}$-th coefficient of $F(\mathbf{z})$,

$$
\# 2 S A T(F)=\left[c_{1}^{2} c_{2}^{2} \ldots c_{5}^{2}\right] A\left(c_{1}, \ldots, c_{5}\right)
$$

Relaxation of the exact sampling: Boltzmann distribution

Boltzmann distribution

Let $S(z)$ be the generating function of the language \mathcal{S} :

$$
S(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

Consider a distribution \mathbb{P}_{z} on words from \mathcal{S} :

- conditioned on word length n, the distribution is uniform
- and the distribution of the length follows

$$
\mathbb{P}_{z}(|w|=n)=\frac{a_{n} z^{n}}{S(z)}
$$

- Problem 3: given an unambiguous context-free grammar \mathcal{S} and $z>0$, sample a word from the Boltzmann distribution

Boltzmann sampler

$$
S_{i} \rightarrow \sum_{j} T_{i j}\left(S_{1}, \ldots, S_{n}, \bullet\right)
$$

Algorithm 1: Boltzmann sampler for context-free grammars
Data: real value $z>0$
Result: Random word from Boltzmann distribution
Function $\Gamma S_{i}(z)$:
if S_{i} is terminal then

```
return • ;
```

for all j do

$$
p_{j}:=\frac{T_{i j}\left(S_{1}(z), \ldots, S_{n}(z), z\right)}{S_{i}(z)}
$$

Choose the transition $T_{i j}$ with probability p_{j}; $A_{1} A_{2} \ldots A_{k}:=T_{i j}$;
return $\Gamma A_{1}(z) \Gamma A_{2}(z) \cdots \Gamma A_{k}(z) ;$

Multiparametric Boltzmann sampler

$$
S_{i} \rightarrow \sum_{j} T_{i j}\left(S_{1}, \ldots, S_{n}, \bullet_{1}, \bullet_{2}, \cdots, \bullet_{\ell}\right)
$$

Algorithm 2: Boltzmann sampler for context-free grammars
Data: real values $z_{1}, z_{2}, \cdots, z_{\ell}>0$
Result: Random word from Boltzmann distribution
Function $\Gamma S_{i}(z)$:
if S_{i} is terminal \bullet_{k} then

```
return © *;
```

for all j do

$$
p_{j}:=\frac{T_{i j}\left(S_{1}(\mathbf{z}), \ldots, S_{n}(\mathbf{z}), z_{1}, z_{2}, \cdots, z_{\ell}\right)}{S_{i}(\mathbf{z})}
$$

Choose the transition $T_{i j}$ with probability p_{j}; $A_{1} A_{2} \ldots A_{k}:=T_{i j}$;
return $\Gamma A_{1}(z) \Gamma A_{2}(z) \cdots \Gamma A_{k}(z) ;$

Properties of the Boltzmann sampler

[Duchon, Flajolet, Louchard, Schaeffer], [Bodini, Ponty]

1. Theorem 1: Boltzmann sampler returns a word from the Boltzmann distribution
2. Theorem 2: The expected number of terminals \bullet_{k} is given by

$$
\mathbb{E}_{\boldsymbol{z}}\left[\#_{o f} \bullet_{k} \text { in a random word } w\right]=z_{k} \frac{\frac{\partial}{\partial z_{k}} S(\mathbf{z})}{S(\mathbf{z})}
$$

3. Theorem 3: In strongly connected grammars, if

$$
\mathbb{E}_{\mathbf{z}}\left[\#_{o f} \bullet_{k}\right]=n_{k}=\alpha_{k} n, \quad n \rightarrow \infty
$$

then, under Boltzmann distribution with parameter \mathbf{z},

$$
\left[\#_{o f} \bullet_{k} \text { in } w||w|=n] \underset{n \rightarrow \infty}{\stackrel{d}{\longrightarrow}} \mathcal{N}\left(\alpha_{k} n, C_{k} n\right)\right.
$$

Tuning of the multiparametric Boltzmann sampler

!! The handles cannot be tuned independently !!

Tuning of the multiparametric Boltzmann sampler

[Bendkowski, Bodini, D.]
Theorem. Let the expected values n_{1}, \ldots, n_{ℓ} of the terminals $\bullet_{1}, \bullet_{2}, \cdots, \bullet \ell$ be given. Let $S_{k}(\boldsymbol{z})$ satisfy

$$
\begin{aligned}
S_{1} & =\Phi_{1}\left(S_{1}, \ldots, S_{n}, \mathbf{z}\right), \\
& \ldots \\
S_{n} & =\Phi_{n}\left(S_{1}, \ldots, S_{n}, \mathbf{z}\right) .
\end{aligned}
$$

The tuning vector $\left(z_{1}, \ldots, z_{\ell}\right)=\left(e^{x_{1}}, \ldots, e^{x_{\ell}}\right)$ can be obtained by solving a convex optimisation problem

$$
\begin{aligned}
& \quad S-n_{1} x_{1}-n_{2} x_{2}-\ldots-n_{\ell} x_{\ell} \rightarrow \min _{\left(S_{1}, \cdots, S_{n}, x_{1}, \cdots, x_{\ell}\right)}, \\
& S_{1} \geq \log \Phi_{1}\left(e^{S_{1}}, \ldots, e^{S_{n}}, e^{x_{1}}, \ldots, e^{x_{\ell}}\right), \\
& \quad \ldots \\
& S_{n} \geq \log \Phi_{n}\left(e^{S_{1}}, \ldots, e^{S_{n}}, e^{x_{1}}, \ldots, e^{x_{\ell}}\right) .
\end{aligned}
$$

Remark about practical implementation

[Domahidi, Chu, Boyd], [Grant, Boyd, Ye]

This problem is convex:

$$
\begin{aligned}
& \quad S-n_{1} x_{1}-n_{2} x_{2}-\ldots-n_{\ell} x_{\ell} \rightarrow \min _{\left(S_{1}, \cdots, S_{n}, x_{1}, \cdots, x_{\ell}\right)}, \\
& S_{1} \geq \log \Phi_{1}\left(e^{S_{1}}, \ldots, e^{S_{n}}, e^{x_{1}}, \ldots, e^{x_{\ell}}\right), \\
& \quad \ldots \\
& S_{n} \geq \log \Phi_{n}\left(e^{S_{1}}, \ldots, e^{S_{n}}, e^{x_{1}}, \ldots, e^{x_{\ell}}\right) .
\end{aligned}
$$

!! In general, it is difficult to solve black-box convex problems fast but in this case we can !!
DCP principle. If the optimisation problem can be presented as a composition of "atomic" convex problems, then it can be transformed into a standard form and quickly solved.

Part II. Applications

Boltzmann Brain + Paganini

Grammar example: Motzkin trees with non-uniform weights


```
-- Motzkin trees
MotzkinTree = Leaf
    | Unary MotzkinTree (2) [0.3]
    | Binary MotzkinTree MotzkinTree (2).
```


Tiling example, practical benchmark

Tiling example, practical benchmark

Tilings $9 \times n$ form a regular grammar with

- 1022 tuning parameters
- 19k states
- 357k transitions

We tune for a uniform distribution for tile frequency.
This results in few hours of tuning.

Applications

1. Software testing using lambda calculus
2. Non-uniform sparse random graphs
3. Belief propagation for RNA design
4. Bose-Einstein condensate in quantum harmonic oscillator
5. Multiclass queueing networks
6. Combinatorial learning and Maximum Likelihood

Application 1. Software testing

Application 1: software testing

Goal: finding bugs in optimising compilers using corner-case random sampling of simply typed lambda terms

The Glasgow Haskell Compiler

\#5557 closed bug (fixed)

Code using seq has wrong strictness (too lazy)

Сообщил:	michal.palka	Владелеи:
Приоритет:	high	Этап разработки:
Компонент:	Compiler	Версия:
Ключевые слова:	seq strictness strict lazy	Копия:
Operating System:	Unknown/Multiple	Architecture:
Type of fallure:	Incorrect result at runtime	Test Case:

Application 1: software testing

- Plain lambda terms: Motzkin trees whose leaves contain non-negative integers.
- Closed lambda terms:

Plane lambda terms whose leaf values do not exceed their unary height.

- Holy grail: simply typed lambda terms (not achived yet)

Application 1: software testing

Tuning uniform leaf index frequencies from 0 to 8:

Table 3. Empirical frequencies (with respect to the term size) of index distribution.

Index	$\underline{0}$	$\underline{1}$	$\underline{2}$	$\underline{\mathbf{3}}$	$\underline{4}$	$\underline{5}$	$\underline{6}$	$\underline{\mathbf{7}}$	$\underline{\mathbf{8}}$
Tuned frequency	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%
Observed frequency	7.50%	7.77%	8.00%	8.23%	8.04%	7.61%	8.53%	7.43%	9.08%
Default frequency	21.91%	12.51%	5.68%	2.31%	0.74%	0.17%	0.20%	0.07%	--

Can be also tuned:

- number of atomic nodes of distinguished colors
- number of redexes (i.e. patterns necessary to perform a computation step in lambda calculus)
- number of head abstractions
- number of closed subterms
- number of any tree-like patterns

Application 2. Non-uniform sparse random graphs

Application 2. Non-uniform sparse random graphs

 [de Panafieu, Ramos], [D., Ravelomanana]Random labeled graph from $\mathcal{G}_{26,30, \Delta}$ with the set of degree constraints $\Delta=\{1,2,3,5,7\}$

Theorem [D., Ravelomanana]. Phase transition of the complex component appearance is shifted in the model with degree constraints.

Application 2. Non-uniform sparse random graphs

- Graph decomposition: trees, unicycles, finite number of complex components w.h.p.
- Generating function of graphs near the point of phase transition can be written as a product of "atomic" generating functions
- Default behaviours near the phase transition:
- dangling tree size $\Theta\left(n^{1 / 3}\right)$,
- 2-core path length $\Theta\left(n^{1 / 3}\right)$,
- number of trees,
- number of unicycles,
- frequencies of vertices with given degrees,
- etc.
- Many parameters can be tweaked within Boltzmann distribution yielding unusual graph distributions

Application 3. Belief propagation for RNA design

Application 3: Belief propagation for RNA design

[Hammer, Ponty, Wang, Will], [Ponty, Will: personal communication]

- Problem: given the set of allowed secondary structures $\left(s_{1}, \cdots, s_{k}\right)$, sample uniformly at random RNA satisfying each of those structures.
- Lemma: the problem is equivalent to enumerating independent sets in bipartite graphs

Application 3: Belief propagation for RNA design

image taken from [Hammer, Ponty, Wang, Will]

Step 1: construct a graph based on secondary structures

Application 3: Belief propagation for RNA design

image taken from [Hammer, Ponty, Wang, Will]

Step 2: construct a suitable tree decomposition and a context-free grammar

$$
m_{\{u g e\} \rightarrow\{p g u\}}\left(x_{g}, x_{u}\right)=\sum_{\text {allowed } x_{e}}\left(m_{\{\text {uea }\} \rightarrow\{u g e\}}\left(x_{u}, x_{e}\right)\right)\left(m_{\{e s\} \rightarrow\{u g e\}}\left(x_{e}\right)\right)
$$

Application 3: Belief propagation for RNA design

image taken from [Hammer, Ponty, Wang, Will]
Step 3: add the parameters

- each secondary structure energy (marked by u_{c})
- letter frequency

$$
m_{u \rightarrow v}(x)=\sum_{\widetilde{x}} \prod_{w \rightarrow u} m_{w \rightarrow u}(x, \widetilde{x}) \times u_{c}^{- \text {energy of added edge }}
$$

Application 3: Belief propagation for RNA design
 [Ponty, Will: personal communication]

Conclusion:

- The energies of the secondary structures and letter frequencies can be tuned
- This can be subsequently refined to energies of adjacent pairs in RNA sequence, triples, etc.
- Empirically observed energy distributions are Gaussian

Application 4: Bose-Einstein condensate in quantum harmonic oscillator

Bianconi-Barabási model

An evolving network can be compared to a diluted gas at low temperature

Bose-Einstein condensation in evolving networks

Bose gas
temperature
energy
particle
number of energy levels
Bose-Einstein condensation
network evolution

> temperature energy
> half-edge
\leqslant number of nodes
topological phase transition

In this model, the number of particles on the energy level
ε follows the Bose statistics $n(\varepsilon)=$ $\frac{1}{e^{\beta(\varepsilon-\mu)}-1}$ which also represents the number of edges linking to nodes with energy ε.

Application 4: Bose-Einstein condensate in quantum harmonic oscillator
[Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]

Integer partitions \leftrightarrow 1-dimensional quantum oscillator

$$
16=1+3+3+4+5
$$

$$
\operatorname{partitions}=\operatorname{multiset}(\mathbb{N})=\operatorname{multiset}(\operatorname{multiset}(1))
$$

Application 4: Bose-Einstein condensate in quantum

 harmonic oscillator[Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]
Coloured partitions $\leftrightarrow \mathbf{d}$-dimensional quantum oscillator

$$
\text { coloured partitions }=\text { multiset }\binom{\mathbb{N}+d-1}{\mathbb{N}}=\operatorname{MSet}(M \operatorname{Set}(d \cdot 1))
$$

Application 4: Bose-Einstein condensate in quantum harmonic oscillator
 [Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]

Coloured partitions $\leftrightarrow \mathbf{d}$-dimensional quantum oscillator
Weighted partition Random particle assembly

Sum of numbers
Number of colours
Row of Young table
Number of rows
Number of squares in the row
Partition limit shape

$$
\binom{d+\lambda-1}{\lambda}
$$

Total energy
Dimension (d)
Particle
Number of particles
Energy of a particle (λ)
Bose-Einstein condensation
Number of particle states

Problem: generate random assemblies with given numbers of colours $\left(n_{1}, n_{2}, \ldots, n_{d}\right)$.

Application 4: Bose-Einstein condensate in quantum harmonic oscillator

[Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]
Challenge: express the inner generating function

$$
\operatorname{MSET}\left(\bullet_{1}, \bullet_{2}, \cdots, \bullet_{\ell}\right)=\frac{1}{1-z_{1}} \cdot \frac{1}{1-z_{2}} \cdots \cdot \frac{1}{1-z_{\ell}}-1
$$

in DCP rules using only polynomial number of additions and multiplications.
Solution: convexity proof of length $\Theta\left(\ell^{2}\right)$ using dynamic programming.

(A) $[5,10,15,20,25]$

(B) $[4,4,4,4,10,20,30,40]$

(C) $[80,40,20,10,9,8,7,6,5]$

Application 5: Multiclass queueing networks

Application 5: Multiclass queueing networks

Gordon-Newell network: Markov chain, each node is a queue, service time of the queue v_{i} is $\sim \operatorname{Exp}\left(\mu_{i}\right)$.

Theorem (Gordon, Newell). Stationary distribution of the Gordon-Newell network is Boltzmann with multivariate generating function

$$
G\left(z_{1}, z_{2}, \cdots z_{\ell}\right)=\frac{1}{1-\pi_{1} \frac{z_{1}}{\mu_{1}}} \cdot \frac{1}{1-\pi_{2} \frac{z_{2}}{\mu_{2}}} \cdots \cdots \frac{1}{1-\pi_{\ell} \frac{z_{\ell}}{\mu_{\ell}}},
$$

where

$$
\pi_{i}=\sum_{j=1}^{\ell} p_{j i} \pi_{j}, \quad \sum_{i=1}^{\ell} \pi_{i}=1
$$

Application 5: Multiclass queueing networks

Multiclass generalisation: z_{i} correspond to the queues, u_{j} correspond to different types of clients

$$
G\left(z_{1}, z_{2}, \ldots, z_{\ell}, u_{1}, u_{2}, \cdots u_{M}\right)=\prod_{i=1}^{\ell} \frac{1}{1-z_{i} \sum_{j=1}^{M} \rho_{i j} u_{j}}
$$

Boltzmann tuning: configure the expected proportions of clients of different types among the queues and the expected lengths of each queue.

Application 6: Combinatorial learning

Application 6: Combinatorial learning

Maximum likelihood estimate for Boltzmann distribution.

$$
\begin{aligned}
& L\left(X_{1}, \ldots, X_{n} \mid z\right)=\sum_{i=1}^{n} \log \mathbb{P}\left(\left|X_{i}\right|=n \mid z\right)=\log \frac{a_{n_{i}} z^{n_{i}}}{F(z)} \\
& \quad=\sum \log a_{n_{i}}+\sum n_{i} \log z-n \log F(z) \rightarrow \max _{z}
\end{aligned}
$$

We obtain the tuning equation:

$$
\frac{\sum_{i=1}^{n} n_{i}}{n}=z \frac{F^{\prime}(z)}{F(z)}
$$

- Hidden parameter estimation. Objects are sampled from multivariate Boltzmann distribution $\boldsymbol{z}=\left(z_{1}, \ldots, z_{k}\right)$. We observe only a part of the parameters $\left(n_{1}^{*}, \ldots, n_{\ell}^{*}\right)$. Estimate \boldsymbol{z}.

Application 6: Combinatorial learning

Hidden parameter estimation

- Hidden parameter estimation. Objects are sampled from multivariate Boltzmann distribution $z=(z, u)$. We observe only the parameter n corresponding to z. Estimate $\boldsymbol{z}=(z, u)$.
- Maximising the log-likelihood we obtain:
- Multiparametric \#P-complete problem:

$$
\begin{aligned}
\sum_{i=1}^{n} n_{i}-n \frac{\partial_{z} F}{F} & =0 \\
\sum_{i=1}^{n} \frac{\partial_{u}\left[z^{n_{i}}\right] F(z, u)}{\left[z^{n_{i}}\right] F(z, u)}-n \frac{\partial_{u} F(z, u)}{F(z, u)} & =0
\end{aligned}
$$

Application 6: Combinatorial learning

Hidden parameter estimation

- Multiparametric \#P-complete problem:

$$
\begin{array}{r}
\sum_{i=1}^{n} n_{i}-n \frac{\partial_{z} F}{F}=0 \\
\sum_{i=1}^{n} \frac{\partial_{u}\left[z^{n_{i}}\right] F(z, u)}{\left[z^{n_{i}}\right] F(z, u)}-n \frac{\partial_{u} F(z, u)}{F(z, u)}=0
\end{array}
$$

- Boltzmann relaxation:

$$
\frac{\partial_{u}\left[z^{n_{i}}\right] F(z, u)}{\left[z^{n_{i}}\right] F(z, u)} \approx \frac{\partial_{u} F\left(z^{*}\left(n_{i}\right), u\right)}{F\left(z^{*}\left(n_{i}\right), u\right)}
$$

The parameter $z^{*}\left(n_{i}\right)$ can be found by the tuning procedure

Conclusion

Conclusion

1. Boltzmann sampler is a fundamental tool for multiparametric sampling. The tuning procedure is very natural in many contexts.
2. Context-free unambiguous grammars are ubiquitous in many areas of mathematics, physics and computer science.
3. The tuning algorithm can be interpreted in terms of Maximum Likelihood Estimation for combinatorial objects

Thank you for your attention

