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Random sampling

Problem
Suppose that some implicit description of P is provided.

Let X ∼ P, sample X

Framework
▶ Which descriptions of P are admitted?
▶ If P is parametric, what is pre- and computation complexity?
▶ What error margin is allowed?
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Why random sampling?
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Motivations for random sampling

▶ Art and entertainment
▶ T-shirt printing
▶ Paintings, decorations, tilings
▶ Music composition
▶ Artificial intelligence artwork

▶ Monte-Carlo simulations
▶ Property-based software testing (QuicKChecK, lambda terms)
▶ Biology (cell dynamics, RNA structures)
▶ Statistical physics (random maps, Bose–Einstein condensate,

Ising model, tilings, plane partitions)
▶ Theoretical computer science

▶ Random permutations, sorting algorithms, cellular automata
▶ Random graphs and community detection
▶ Crypto primitives and low-level programming
▶ Concurrent process analysis, queueing systems
▶ Automata sampling
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Outline of the current talk

Multiparametric Boltzmann sampling︸ ︷︷ ︸
Part I

and applications︸ ︷︷ ︸
Part II
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Part I. Generating functions and Boltzmann samplers
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Generating functions and the symbolic method

Framework
▶ Discrete objects are represented by words in a finite alphabet.
▶ The size of the object is the number of its letters.
▶ Let an be the number of words of length n

Generating function of the counting sequence:

A(z) =
∞∑
n=0

anzn
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The cartesian product

(
a0 + a1z+ a2z2 + . . .

) (
b0 + b1z+ b2z2 + . . .

)
= c0 + c1z+ c2z2 + . . .

The convolution rule corresponding to EGF:

cn =
n∑

k=0

akbn−k
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Example: lambda terms in de Bruijn notation

λx

λy

λz

@

@

x z

@

y z

λ

λ

λ

@

@

2 0

@

1 0

λx.λy.λz.(xz)(yz) −→ λλλ(20)(10)

Classical notation −→ de Bruijn notation



10/55

Example: lambda terms in de Bruijn notation

L ::= λL | (LL) | n

n ::= 0 | Sn.

L(z) = zL(z) + zL(z)2 +
z

1− z

Tn = Tn−1 +

n∑
k=1

TkTn−k−1 + 1

L =
λ

L

+

@

L L

+ D

D = 0 +
S

D
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Recursive sampling
Algorithm 1: Recursive algorithm for plain lambda terms
Input: Integer n
Output: Plain lambda term of size n
begin

Precompute array (Tk)nk=0 using the recurrence

Tn = Tn−1 +

n∑
k=1

TkTn−k−1 + 1 , T0 = 0

For each n, precompute the probability distribution Pn:

p(n)λ =
Tn−1

Tn
, p(n)k =

TkTn−k−1

Tn
, pn =

1

Tn

Function Generate(n):
if n = 1 then

return 0 // minimal de Bruijn index ;

Sample index k from the probability distribution Pn ;
if k = λ then

return λ Generate(n− 1) // abstraction ;

if k = n then
return n // de Bruijn index ;

L := Generate(k) ;
R := Generate(n− k− 1) ;
return (LR) // application ;
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Boltzmann sampling
Algorithm 2: Boltzmann sampler for plain lambda terms
Input: Integer number n
Output: Random term of variable size, target expected size n
begin

Precompute z as a function of n // stay tuned
Function Generate(z):

Carefully look at the equation

L(z) = zL(z) + zL(z)2 +
z

1− z

Flip a weighted coin X ∈ {λ,@, n} with weights

Pλ =
zL(z)
L(z)

, P@ =
zL2(z)
L(z)

, Pn =
z

1−z

L(z)

if X = λ then
return λ Generate(n− 1) // abstraction ;

if X = @ then
L := Generate(z) ;
R := Generate(z) ;
return (LR) // application ;

if X = n then
return Geom(z) // de Bruijn index ;
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Boltzmann distribution
Probability output of the Boltzmann samplers

Let S(z) be the generating function of the language S :

S(z) =
∑
n⩾0

anzn

Consider a distribution Pz on words w ∈ S :
▶ conditioned on word length |w| = n, the distribution is uniform
▶ length distribution follows Gibbs law

Pz(|w| = n) =
anzn

S(z)

▶ expected word length:

Ez(n) = z
S′(z)
S(z)
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Multivariate generating functions

Consider a language S ⊂ Σ∗ where Σ = {•1, •2, •3, •4} is finite.
Let an1,n2,n3,n4 count the number of words w ∈ S containing
▶ n1 letters •1,
▶ n2 letters •2,
▶ n3 letters •3,
▶ n4 letters •4;

Its multivariate generating function is

S(z1, z2, z3, z4) =
∑
n⩾0

an1,n2,n3,n4z
n1
1 zn22 zn33 zn44 .

Boltzmann distribution

P(n1, n2, n3, n4 | z1, z2, z3, z4) =
an1,n2,n3,n4z

n1
1 zn22 zn33 zn44

S(z1, z2, z3, z4)
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Example: lambda terms and their parameters
Abstractions, variables, successors and redexes marked separately:

L(z, u⃗) = u(abs)zL(z, u⃗) + N(z, u⃗)

N(z, u⃗) =
u(var)z

1− u(suc)z
+ u(red)u(abs)z

2L(z, u⃗)2 + zN(z, u⃗)L(z, u⃗).

L =
λ

L

+ N

N = D +

@
λ

L
L

+

@

N L
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Multiparametric Recursive sampling

Algorithm 3: Recursive algorithm for plain lambda terms with
parameters
Input: Target integer parameters N, n(abs), n(var), n(suc), n(red)
Output: Random term with target size N, and given parameter

values
begin

Precompute array (TK,k1,k2,k3,k4)k,k1,k2,k3,k4 using the
recurrence . . .

Complexity
Memory complexity is now O(n5) and grows exponentially with the
number of parameters.
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Multiparametric Boltzmann sampling
Plain lambda terms with given portions of abstractions, variables, successors and redexes

L(z, u⃗) = u(abs)zL(z, u⃗) + N(z, u⃗)

N(z, u⃗) =
u(var)z

1− u(suc)z
+ u(red)u(abs)z

2L(z, u⃗)2 + zN(z, u⃗)L(z, u⃗).

Algorithm 4: Boltzmann sampler for plain lambda
terms
Input: Target expectations N, n(abs), n(var), n(suc), n(red)
Output: Random term with target expected size N, and

given expected parameters
begin

Precompute
(
z, u(abs), u(var), u(suc), u(red)

)
as

functions of
(
N, n(abs), n(var), n(suc), n(red)

)
// stay tuned;
Function ΓL(z, u(abs), u(var), u(suc), u(red)):

Generate X ∈ {0, 1} such that

P(X = 0) =
u(abs)zL(z, u⃗)

L(z, u⃗)
,

P(X = 1) =
N(z, u⃗)
L(z, u⃗)

X = 0 ⇒ return λΓL(z, u⃗);
X = 1 ⇒ return ΓN(z, u⃗);

Function
ΓN(z, u(abs), u(var), u(suc), u(red)):

Generate X ∈ {0, 1, 2} such that

P(X = 0) =

u(var)z
1−u(suc)z

N(z, u⃗)
,

P(X = 1) =
u(red)u(abs)z2L(z, u⃗)2

N(z, u⃗)
,

P(X = 2) =
zN(z, u⃗)L(z, u⃗)

N(z, u⃗)

X = 0 ⇒ return Geom(zu(suc));

X = 1 ⇒ return (λΓL(z, u⃗))ΓL(z, u⃗);
X = 1 ⇒ return (ΓN(z, u⃗)ΓL(z, u⃗));
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Why Boltzmann sampling?
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Exact multiparametric sampling

Suppose that Si are defined by an unambiguous context-free
grammar

Si →
∑
j

Tij(S1, . . . , Sn, •1, •2, •3, •d)

where (Tij)ij are transitions, and (•1, •2, •3, •d) are alphabet letters.

Problem
Given positive integers (n1, n2, . . . , nd), sample a word w with nk
literals of color k from a context-free grammar uniformly at random;

Complexity
Exact multiparametric sampling from CFG is #P-complete, i.e.
higher in the complexity hierarchy than NP-complete.
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Exact sampling is #P-complete: reduction from #2-SAT
[Welsh, Gale ’2001] + [Jerrum, Valiant, Vazirani ’86] + [Bendkowski, Bodini, D. ’2020]

Consider a 2-CNF formula

F = (x1 ∨ x2)
c1

(x1 ∨ x4)
c2

(x2 ∨ x3)
c3

(x2 ∨ x4)
c4

(x3 ∨ x4)
c5

Construct a system of algebraic equations

A(c1, . . . , c5) = (x1 + x1) . . . (x4 + x4)(1 + c1) . . . (1 + c5)

where

x1 = c1c2, x1 = 1, x2 = 1, x2 = c1c3c4, x3 = c3c5, · · ·

Then, using the notation [zn]F(z) = n-th coefficient of F(z),

#2SAT(F) = [c21c
2
2 . . . c

2
5]A(c1, . . . , c5)
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Tuning of a multiparametric Boltzmann sampler

Handles z ⇒ Expectations Enk

z1

z2

zℓ

En1

En2

Enℓ

‼ The handles cannot be tuned independently ‼
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Multiparametric tuning complexity

Theorem (Bendkowski, Bodini, D. ’2020)
For context-free grammars with L states and transitions, d parameters
and target size parameter n, there is a tuning algorithm running in time

O(d3.5L log n)

based on convex optimisation with barriers.

Proof idea: log-sum-exp with non-negative coefficients is convex

f(x1, . . . , xn) = log
n∑

i=1

exi

generating functions are reduced to log-sum-exp by variable change
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Part II. Applications
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Boltzmann Brain + Paganini
Grammar example: Motzkin trees with non-uniform weights

M
= z +

z2

M

30%

+
z2

M M

M(z) = z+ uz2M(z) + z2M2(z)
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Applications and examples

1. Polyomino tilings

2. Software testing using lambda calculus

3. Models of random trees

4. RNA folding design

5. Bose–Einstein condensate in quantum harmonic oscillator

6. Permutation classes
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Application 1. Tilings and performance benchmarks
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Tiling example, practical benchmark
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Tiling example, practical benchmark

Tilings 9× n form a regular grammar with
▶ 1022 tuning parameters
▶ 19k states
▶ 357k transitions

We tune for a uniform distribution for tile frequency.
This results in few hours of tuning.
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Application 2. Software testing using lambda calculus
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Application 2: software testing

Goal: finding bugs in optimising compilers using corner-case
random sampling of simply typed lambda terms
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Application 2: software testing

▶ Plain lambda terms:
Motzkin trees whose leaves
contain non-negative
integers.

▶ Closed lambda terms:
Plane lambda terms whose
leaf values do not exceed
their unary height.

▶ Holy grail: simply typed
lambda terms (in progress)
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Application 2: software testing

Tuning uniform leaf index frequencies from 0 to 8:

Can be also tuned:
▶ number of atomic nodes of distinguished colors
▶ number of redexes (i.e. patterns necessary to perform a

computation step in lambda calculus)
▶ number of head abstractions
▶ number of closed subterms
▶ number of any tree-like patterns
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Application 3. Models of random trees
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Application 3. Models of random trees
Model 1: Multi-partite rooted labelled trees

Target expectation tuning (0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19)

T1(z, u1, . . . , ud) = zu1eT2(z,u1,...,ud)

T2(z, u1, . . . , ud) = zu2eT3(z,u1,...,ud)

...

Td(z, u1, . . . , ud) = zude
T1(z,u1,...,ud)

z u1 u2 u3 u4 u5 u6 u7 u8 u9 u10
0.3 0.009 1.88 1.37 1.29 1.26 1.25 1.24 1.23 1.23 3.52

Table 1: Numerical values for
arguments

0.90% 3.24% 5.04% 7.44% 9.42% 11.1% 13.9% 14.7% 16.3% 17.7%
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
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Application 3. Models of random trees
Model 2: Otter trees with coloured leaves

Target expectation tuning (0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19)

T(z, u1, . . . , ud) = z
d∑

i=1

ui +MSet2(T(z, u1, . . . , ud))

MSet2(T(z, u1, . . . , ud)) =
T(z, u1, . . . , ud)2 + T(z2, u21, . . . , u

2
d)

2

u1z u2z u3z u4z u5z u6z u7z u8z u9z u10z
0.005 0.015 0.025 0.035 0.044 0.054 0.063 0.072 0.081 0.09

Table 2: Numerical values for arguments

1.18% 3.34% 5.64% 7.25% 9.20% 11.0% 11.8% 14.9% 16.3% 19.1%
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
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Application 4. RNA folding design
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Application 4: RNA folding design
[Hammer, Ponty, Wang, Will ’2019]

▶ Problem. Given the set of allowed
secondary structures (s1, · · · , sk),
sample uniformly at random RNA
satisfying each of those structures.

▶ Proposition. The problem is
equivalent to enumerating
independent sets in bipartite graphs
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Application 4: RNA folding design
image taken from [Hammer, Ponty, Wang, Will ’2019]

Step 1: construct a graph based on secondary structures
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Application 4: RNA folding design
image taken from [Hammer, Ponty, Wang, Will ’2019]

Step 2: construct a suitable tree decomposition and a context-free
grammar

m{uge}→{pgu}(xg, xu) =
∑

allowed xe

(
m{uea}→{uge}(xu, xe)

) (
m{es}→{uge}(xe)

)
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Application 4: RNA folding design
image taken from [Hammer, Ponty, Wang, Will ’2019]

Step 3: add the parameters
▶ each secondary structure energy (marked by uc)
▶ letter frequency

mu→v(x) =
∑
x̃

∏
w→u

mw→u(x, x̃)× u−energy of added edge
c
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Application 4: RNA folding design
image taken from [Hammer, Ponty, Wang, Will ’2019]

Conclusion:
▶ The energies of the secondary structures and letter frequencies

can be tuned
▶ This can be subsequently refined to energies of adjacent pairs

in RNA sequence, triples, etc.
▶ Empirically observed energy distributions are Gaussian
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Application 5: Bose–Einstein condensate in quantum harmonic
oscillator
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Bianconi–Barabási model
An evolving network can be compared to a diluted gas at low temperature
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Bose–Einstein condensation in evolving networks
Bianconi–Barabási model

Bose gas network evolution
temperature temperature

energy energy
particle half-edge

number of energy levels ⩽ number of nodes
Bose–Einstein condensation topological phase transition

In this model, the number of par-
ticles on the energy level
ε follows the Bose statistics n(ε) =

1
eβ(ε−µ)−1

which also represents
the number of edges linking to
nodes with energy ε.
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Application 5: Bose–Einstein condensate in quantum
harmonic oscillator
[Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]

Integer partitions ↔ 1-dimensional quantum oscillator

partitions = multiset(N) = multiset(multiset(1))



46/55

Application 5: Bose–Einstein condensate in quantum
harmonic oscillator
[Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]

Coloured partitions ↔ d-dimensional quantum oscillator

coloured partitions = multiset
(
N+ d− 1

N

)
= MSet(MSet(d · 1))
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Application 5: Bose–Einstein condensate in quantum
harmonic oscillator
[Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]

Coloured partitions ↔ d-dimensional quantum oscillator
Weighted partition Random particle assembly

Sum of numbers Total energy
Number of colours Dimension (d)
Row of Young table Particle
Number of rows Number of particles

Number of squares in the row Energy of a particle (λ)
Partition limit shape Bose–Einstein condensation(d+λ−1

λ

)
Number of particle states

Problem: generate random assemblies with given
numbers of colours (n1, n2, . . . , nd).



48/55

Application 5: Bose–Einstein condensate in quantum
harmonic oscillator
[Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]

Challenge: express the inner generating function

MSET(•1, •2, · · · , •ℓ) =
1

1− z1
· 1

1− z2
· · · · · 1

1− zℓ
− 1

in DCP rules using only polynomial number of additions and
multiplications.
Solution: convexity proof of length Θ(ℓ2) using dynamic
programming.
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Application 6: Substitution-closed permutation classes
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Simple permutations and inflations
▶ Simple permutation: does not contain intervals

{a, a+ 1, ..., b} → {c, c+ 1, ..., d}

of length strictly between 1 and n. Permutation from the figure
is not simple because it contains an interval {1, 2, 3} → {5, 6, 7}.

▶ Inflation is obtained by replacing each entry by interval

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8
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Substitution-closed classes

Theorem (Albert, Atkinson ’2005)
Let C be substitution-closed and contain 12 and 21. Let S be the class
of all simple permutations contained in C. Then, C satisfies

C = {•}+ 12[C+, C] + 21[C−, C] +
∑
π∈S

π[C, C, . . . , C]

C+ = {•}+ 21[C−, C] +
∑
π∈S

π[C, C, . . . , C]

C− = {•}+ 12[C+, C] +
∑
π∈S

π[C, C, . . . , C].

Remark
Algorithm for computing specifications of permutation classes
containing finitely many simple permutations is given in
[Bassino, Bouvel, Pierrot, Pivoteau, Rossin ’2017]
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Substitution-closed classes
Expected number of simple permutations π ∈ S

C = {•}+ 12[C+, C] + 21[C−, C] +
∑
π∈S

uππ[C, C, . . . , C]

C+ = {•}+ 21[C−, C] +
∑
π∈S

uππ[C, C, . . . , C]

C− = {•}+ 12[C+, C] +
∑
π∈S

uππ[C, C, . . . , C].

By tuning the expectations attached to (uπ)π∈S, we can alter the
expected frequencies of inflation used during the construction of a
permutation.
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Conclusion
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Conclusion

1. Boltzmann sampler is a fundamental tool for multiparametric
sampling. The tuning procedure is very natural in many
contexts.

2. Context-free unambiguous grammars are ubiquitous in many
areas of mathematics, physics and computer science.

3. Behind the scenes:
▶ An O(nd/2) algorithm with O(log n) memory for exact

multiparametric sampling
▶ The tuning algorithm can be interpreted in terms of Maximum

Likelihood Estimation for combinatorial objects
▶ Other frameworks: unlabelled structures and finite differential

equations
▶ Other applications: multiclass queues, hidden parameter

estimation, random graphs with weighted degrees and patterns
▶ Theory of self-concordant barriers for interior-point

optimisation
▶ Precise expected complexity and fine-tuning for rejections
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Thank you for your attention


