Multiparametric Boltzmann sampling and applications

Maciej Bendkowski ${ }^{\text {a }}$ Sergey Dovgal ${ }^{\text {b }}$ Olivier Bodini ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Jagellonian University, Krakow
${ }^{\mathrm{b}}$ LaBRI, Université de Bordeaux
${ }^{c}$ LIPN, Université Sorbonne Paris Nord
MOCQUA Seminar, 25/03/2021 (online)

Random sampling

Problem

Suppose that some implicit description of \mathbb{P} is provided.

$$
\text { Let } X \sim \mathbb{P} \text {, sample } X
$$

Framework

- Which descriptions of \mathbb{P} are admitted?
- If \mathbb{P} is parametric, what is pre- and computation complexity?
- What error margin is allowed?

Why random sampling?

Motivations for random sampling

- Art and entertainment
- T-shirt printing
- Paintings, decorations, tilings
- Music composition
- Artificial intelligence artwork
- Monte-Carlo simulations
- Property-based software testing (QuiскСнеск, lambda terms)
- Biology (cell dynamics, RNA structures)
- Statistical physics (random maps, Bose-Einstein condensate, Ising model, tilings, plane partitions)
- Theoretical computer science
- Random permutations, sorting algorithms, cellular automata
- Random graphs and community detection
- Crypto primitives and low-level programming
- Concurrent process analysis, queueing systems
- Automata sampling

Outline of the current talk

$\underbrace{\text { Multiparametric Boltzmann sampling }}_{\text {Part I }}$ and $\underbrace{\text { applications }}_{\text {Part II }}$

Part I. Generating functions and Boltzmann samplers

Generating functions and the symbolic method

Framework

- Discrete objects are represented by words in a finite alphabet.
- The size of the object is the number of its letters.
- Let a_{n} be the number of words of length n

Generating function of the counting sequence:

$$
A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

The cartesian product

$$
\left(a_{0}+a_{1} z+a_{2} z^{2}+\ldots\right)\left(b_{0}+b_{1} z+b_{2} z^{2}+\ldots\right)=c_{0}+c_{1} z+c_{2} z^{2}+\ldots
$$

The convolution rule corresponding to EGF:

$$
c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}
$$

Example: lambda terms in de Bruijn notation

$\lambda x . \lambda y . \lambda z .(x z)(y z) \quad \longrightarrow \quad \lambda \lambda \lambda(\underline{20})(\underline{10})$
Classical notation \longrightarrow de Bruijn notation

Example: lambda terms in de Bruijn notation

$$
\begin{array}{ll}
\mathcal{L}::=\lambda \mathcal{L}|(\mathcal{L L})| \underline{\mathrm{n}} & L(z)=z L(z)+z L(z)^{2}+\frac{z}{1-z} \\
\underline{\mathrm{n}}::=\underline{0} \mid \mathrm{S} \underline{\mathrm{n}} . & T_{n}=T_{n-1}+\sum_{k=1}^{n} T_{k} T_{n-k-1}+1
\end{array}
$$

Recursive sampling

Algorithm 1: Recursive algorithm for plain lambda terms
Input: Integer n
Output: Plain lambda term of size n
begin
Precompute array $\left(T_{k}\right)_{k=0}^{n}$ using the recurrence

$$
T_{n}=T_{n-1}+\sum_{k=1}^{n} T_{k} T_{n-k-1}+1, \quad T_{0}=0
$$

For each n, precompute the probability distribution \mathcal{P}_{n} :

$$
p_{\lambda}^{(n)}=\frac{T_{n-1}}{T_{n}}, \quad p_{k}^{(n)}=\frac{T_{k} T_{n-k-1}}{T_{n}}, \quad p_{\underline{\mathrm{n}}}=\frac{1}{T_{n}}
$$

Function Generate (n):
if $n=1$ then
return $\underline{0}$ // minimal de Bruijn index;
Sample index k from the probability distribution \mathcal{P}_{n};
if $k=\lambda$ then
return λ Generate $(n-1) / /$ abstraction ;
if $k=\underline{\mathrm{n}}$ then
return $\underline{n} / /$ de Bruijn index;
$L:=$ Generate (k);
$R:=$ Generate $(n-k-1)$;
return $(L R)$ // application;

Boltzmann sampling

```
Algorithm 2: Boltzmann sampler for plain lambda terms
Input: Integer number \(n\)
Output: Random term of variable size, target expected size \(n\)
begin
    Precompute \(z\) as a function of \(n / /\) stay tuned
    Function Generate(z):
        Carefully look at the equation
\[
L(z)=z L(z)+z L(z)^{2}+\frac{z}{1-z}
\]
Flip a weighted coin \(X \in\{\lambda, @, \underline{n}\}\) with weights
\[
\mathbb{P}_{\lambda}=\frac{z L(z)}{L(z)}, \quad \mathbb{P}_{@}=\frac{z L^{2}(z)}{L(z)}, \quad \mathbb{P}_{\underline{n}}=\frac{\frac{z}{1-z}}{L(z)}
\]
if \(X=\lambda\) then
        return \(\lambda\) Generate \((n-1) / /\) abstraction ;
if \(X=@\) then
        \(L:=\) Generate ( \(z\) ) ;
        \(R:=\) Generate ( \(z\) );
        return \((L R) / /\) application ;
    if \(X=\underline{\mathrm{n}}\) then
        return \(\underline{\underline{\operatorname{Geom}(z)} / / \text { de Bruijn index ; }}\)
```


Boltzmann distribution

Probability output of the Boltzmann samplers

Let $S(z)$ be the generating function of the language \mathcal{S} :

$$
S(z)=\sum_{n \geqslant 0} a_{n} z^{n}
$$

Consider a distribution \mathbb{P}_{z} on words $w \in \mathcal{S}$:

- conditioned on word length $|w|=n$, the distribution is uniform
- length distribution follows Gibbs law

$$
\mathbb{P}_{z}(|w|=n)=\frac{a_{n} z^{n}}{S(z)}
$$

- expected word length:

$$
\mathbb{E}_{z}(n)=z \frac{S^{\prime}(z)}{S(z)}
$$

Multivariate generating functions

Consider a language $\mathcal{S} \subset \Sigma^{*}$ where $\Sigma=\left\{\bullet_{1}, \bullet_{2}, \bullet_{3}, \bullet_{4}\right\}$ is finite. Let $a_{n_{1}, n_{2}, n_{3}, n_{4}}$ count the number of words $w \in \mathcal{S}$ containing

- n_{1} letters \bullet_{1},
$\rightarrow n_{2}$ letters \bullet_{2},
- n_{3} letters \bullet_{3},
- n_{4} letters \bullet_{4};

Its multivariate generating function is

$$
S\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\sum_{n \geqslant 0} a_{n_{1}, n_{2}, n_{3}, n_{4}} z_{1}^{n_{1}} z_{2}^{n_{2}} z_{3}^{n_{3}} z_{4}^{n_{4}}
$$

Boltzmann distribution

$$
\mathbb{P}\left(n_{1}, n_{2}, n_{3}, n_{4} \mid z_{1}, z_{2}, z_{3}, z_{4}\right)=\frac{a_{n_{1}, n_{2}, n_{3}, n_{4}} z_{1}^{n_{1}} z_{2}^{n_{2}} z_{3}^{n_{3}} z_{4}^{n_{4}}}{S\left(z_{1}, z_{2}, z_{3}, z_{4}\right)}
$$

Example: lambda terms and their parameters

Abstractions, variables, successors and redexes marked separately:

$$
\begin{aligned}
L(z, \vec{u}) & =u_{(\mathrm{abs})} z L(z, \vec{u})+N(z, \vec{u}) \\
N(z, \vec{u}) & =\frac{u_{(\mathrm{var})} z}{1-u_{(\mathrm{suc})} z}+u_{(\mathrm{red})} u_{(\mathrm{abs})} z^{2} L(z, \vec{u})^{2}+z N(z, \vec{u}) L(z, \vec{u}) .
\end{aligned}
$$

Multiparametric Recursive sampling

```
Algorithm 3: Recursive algorithm for plain lambda terms with
parameters
Input: Target integer parameters \(N, n_{(\text {abs })}, n_{(\text {var })}, n_{(\text {suc })}, n_{(\text {red })}\)
Output: Random term with target size \(N\), and given parameter
            values
begin
    Precompute array \(\left(T_{K, k_{1}, k_{2}, k_{3}, k_{4}}\right)_{k, k_{1}, k_{2}, k_{3}, k_{4}}\) using the
        recurrence
```


Complexity

Memory complexity is now $\mathcal{O}\left(n^{5}\right)$ and grows exponentially with the number of parameters.

Multiparametric Boltzmann sampling

Plain lambda terms with given portions of abstractions, variables, successors and redexes

$$
\begin{aligned}
L(z, \vec{u}) & =u_{(\mathrm{abs})} z L(z, \vec{u})+N(z, \vec{u}) \\
N(z, \vec{u}) & =\frac{u_{(\mathrm{var})} z}{1-u_{(\mathrm{suc})} z}+u_{(\mathrm{red})} u_{(\mathrm{abs})} z^{2} L(z, \vec{u})^{2}+z N(z, \vec{u}) L(z, \vec{u}) .
\end{aligned}
$$

```
Algorithm 4: Boltzmann sampler for plain lambda
terms
Input: Target expectations \(N, n_{\text {(abs) }}, n_{\text {(var) }}, n_{\text {(suc) }}, n_{\text {(red) }}\)
Output: Random term with target expected size \(N\), and
    given expected parameters
begin
    Precompute \(\left(z, u_{\text {(abs) }}, u_{(\text {var })}, u_{(\text {suc })}, u_{(\text {(red })}\right)\) as
        functions of ( \(\left.N, n_{(\text {abs })}, n_{(\text {var })}, n_{(\text {suc })}, n_{(\text {red })}\right)\)
    // stay tuned;
    Function \(\Gamma L\left(z, u_{(a b s)}, u_{(\text {var })}, u_{(s u c)}, u_{(\text {red })}\right)\) :
        Generate \(X \in\{0,1\}\) such that
\[
\begin{aligned}
& \mathbb{P}(X=0)=\frac{u_{(\mathrm{abs})} z L(z, \vec{u})}{L(z, \vec{u})}, \\
& \mathbb{P}(X=1)=\frac{N(z, \vec{u})}{L(z, \vec{u})}
\end{aligned}
\]
\[
X=0 \Rightarrow \text { return } \lambda \Gamma L(z, \vec{u}) ;
\]
\[
X=1 \Rightarrow \text { return } \Gamma N(z, \vec{u})
\]
```


Function

$\Gamma N\left(z, u_{(a b s)}, u_{(\text {var })}, u_{(s u c)}, u_{(\text {red })}\right):$
Generate $X \in\{0,1,2\}$ such that

$$
\begin{aligned}
& \mathbb{P}(X=0)=\frac{\frac{u_{(\mathrm{var})} z^{2}}{1-u_{(\mathrm{suc}} z^{2}}}{N(z, \vec{u})} \\
& \mathbb{P}(X=1)=\frac{u_{(\mathrm{red})} u_{(\mathrm{abs})} z^{2} L(z, \vec{u})^{2}}{N(z, \vec{u})} \\
& \mathbb{P}(X=2)=\frac{z N(z, \vec{u}) L(z, \vec{u})}{N(z, \vec{u})}
\end{aligned}
$$

$X=0 \Rightarrow$ return $\operatorname{Geom}\left(z u_{(s u c)}\right)$;
$X=1 \Rightarrow \operatorname{return} \overline{(\lambda \Gamma L(z, \vec{u})) \Gamma L}(z, \vec{u})$;
$X=1 \Rightarrow \operatorname{return}(\Gamma N(z, \vec{u}) \Gamma L(z, \vec{u}))$;

Why Boltzmann sampling?

Exact multiparametric sampling

Suppose that S_{i} are defined by an unambiguous context-free grammar

$$
S_{i} \rightarrow \sum_{j} T_{i j}\left(S_{1}, \ldots, S_{n}, \bullet_{1}, \bullet_{2}, \bullet_{3}, \bullet_{d}\right)
$$

where $\left(T_{i j}\right)_{i j}$ are transitions, and $\left(\bullet_{1}, \bullet_{2}, \bullet_{3}, \bullet_{d}\right)$ are alphabet letters.

Problem

Given positive integers $\left(n_{1}, n_{2}, \ldots, n_{d}\right)$, sample a word w with n_{k} literals of color k from a context-free grammar uniformly at random;

Complexity

Exact multiparametric sampling from CFG is \# P-complete, i.e. higher in the complexity hierarchy than NP-complete.

Exact sampling is \#P-complete: reduction from \#2-SAT
[Welsh, Gale '2001] + [Jerrum, Valiant, Vazirani '86] + [Bendkowski, Bodini, D. '2020]
Consider a $2-\mathrm{CNF}$ formula

$$
F=\underbrace{\left(x_{1} \vee \bar{x}_{2}\right)}_{c_{1}} \underbrace{\left(x_{1} \vee \bar{x}_{4}\right)}_{c_{2}} \underbrace{\left(\bar{x}_{2} \vee \bar{x}_{3}\right)}_{c_{3}} \underbrace{\left(\bar{x}_{2} \vee \bar{x}_{4}\right)}_{4} c_{5}^{\left(\bar{x}_{3} \vee x_{4}\right)}
$$

Construct a system of algebraic equations

$$
A\left(c_{1}, \ldots, c_{5}\right)=\left(x_{1}+\bar{x}_{1}\right) \ldots\left(x_{4}+\bar{x}_{4}\right)\left(1+c_{1}\right) \ldots\left(1+c_{5}\right)
$$

where

$$
x_{1}=c_{1} c_{2}, \quad \bar{x}_{1}=1, \quad x_{2}=1, \quad \bar{x}_{2}=c_{1} c_{3} c_{4}, \quad \bar{x}_{3}=c_{3} c_{5}, \quad \cdots
$$

Then, using the notation $\left[\boldsymbol{z}^{\boldsymbol{n}}\right] F(\boldsymbol{z})=\boldsymbol{n}$-th coefficient of $F(\boldsymbol{z})$,

$$
\# 2 S A T(F)=\left[c_{1}^{2} c_{2}^{2} \ldots c_{5}^{2}\right] A\left(c_{1}, \ldots, c_{5}\right)
$$

Tuning of a multiparametric Boltzmann sampler

$$
\text { Handles } \boldsymbol{z} \Rightarrow \quad \text { Expectations } \mathbb{E} n_{k}
$$

!! The handles cannot be tuned independently !!

Multiparametric tuning complexity

Theorem (Bendkowski, Bodini, D. '2020)
For context-free grammars with L states and transitions, d parameters and target size parameter n, there is a tuning algorithm running in time

$$
\mathcal{O}\left(d^{3.5} L \log n\right)
$$

based on convex optimisation with barriers.
Proof idea: log-sum-exp with non-negative coefficients is convex

$$
f\left(x_{1}, \ldots, x_{n}\right)=\log \sum_{i=1}^{n} e^{x_{i}}
$$

generating functions are reduced to log-sum-exp by variable change

Part II. Applications

Boltzmann Brain + Paganini

Grammar example: Motzkin trees with non-uniform weights


```
-- Motzkin trees
MotzkinTree = Leaf
    | Unary MotzkinTree (2) [0.3]
    | Binary MotzkinTree MotzkinTree (2).
```


Applications and examples

1. Polyomino tilings
2. Software testing using lambda calculus
3. Models of random trees
4. RNA folding design
5. Bose-Einstein condensate in quantum harmonic oscillator
6. Permutation classes

Application 1. Tilings and performance benchmarks

Tiling example, practical benchmark

Tiling example, practical benchmark

Tilings $9 \times n$ form a regular grammar with

- 1022 tuning parameters
- 19k states
- 357k transitions

We tune for a uniform distribution for tile frequency.
This results in few hours of tuning.

Application 2. Software testing using lambda calculus

Application 2: software testing

Goal: finding bugs in optimising compilers using corner-case random sampling of simply typed lambda terms

The Glasgow Haskell Compiler

\#5557 closed bug (fixed)

Code using seq has wrong strictness (too lazy)

Сообщил:	michal.palka	Владелеи:
Приоритет:	high	Этап разработки:
Компонент:	Compler	Версия:
Ключевые слова:	seq strictness strict lazy	Копия:
Operating System:	Unknown/Multiple	Architecture:
Type of fallure:	Incorrect result at runtime	Test Case:

Application 2: software testing

$$
\lambda x, \lambda y, \lambda z \cdot x z(y z)
$$

- Plain lambda terms: Motzkin trees whose leaves contain non-negative integers.
- Closed lambda terms:

Plane lambda terms whose leaf values do not exceed their unary height.

- Holy grail: simply typed lambda terms (in progress)

Application 2: software testing

Tuning uniform leaf index frequencies from 0 to 8:

Table 3. Empirical frequencies (with respect to the term size) of index distribution.

Index	$\underline{0}$	$\underline{1}$	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{5}$	$\underline{6}$	$\underline{7}$	$\underline{8}$
Tuned frequency	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%
Observed frequency	7.50%	7.77%	8.00%	8.23%	8.04%	7.61%	8.53%	7.43%	9.08%
Default frequency	21.91%	12.51%	5.68%	2.31%	0.74%	0.17%	0.20%	0.07%	---

Can be also tuned:

- number of atomic nodes of distinguished colors
- number of redexes (i.e. patterns necessary to perform a computation step in lambda calculus)
- number of head abstractions
- number of closed subterms
- number of any tree-like patterns

Application 3. Models of random trees

Application 3. Models of random trees

Model 1: Multi-partite rooted labelled trees

Target expectation tuning ($0.01,0.03,0.05,0.07,0.09,0.11,0.13,0.15,0.17,0.19)$

$$
\begin{gathered}
T_{1}\left(z, u_{1}, \ldots, u_{d}\right)=z u_{1} e^{T_{2}\left(z, u_{1}, \ldots, u_{d}\right)} \\
T_{2}\left(z, u_{1}, \ldots, u_{d}\right)=z u_{2} e^{T_{3}\left(z, u_{1}, \ldots, u_{d}\right)} \\
\vdots \\
T_{d}\left(z, u_{1}, \ldots, u_{d}\right)=z u_{d} e^{T_{1}\left(z, u_{1}, \ldots, u_{d}\right)}
\end{gathered}
$$

z	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}	u_{9}	u_{10}
0.3	0.009	1.88	1.37	1.29	1.26	1.25	1.24	1.23	1.23	3.52

Table 1: Numerical values for arguments

Application 3. Models of random trees

Model 2: Otter trees with coloured leaves

Target expectation tuning ($0.01,0.03,0.05,0.07,0.09,0.11,0.13,0.15,0.17,0.19)$

$$
\begin{aligned}
T\left(z, u_{1}, \ldots, u_{d}\right) & =z \sum_{i=1}^{d} u_{i}+\operatorname{MSet}_{2}\left(T\left(z, u_{1}, \ldots, u_{d}\right)\right) \\
\operatorname{MSet}_{2}\left(T\left(z, u_{1}, \ldots, u_{d}\right)\right) & =\frac{T\left(z, u_{1}, \ldots, u_{d}\right)^{2}+T\left(z^{2}, u_{1}^{2}, \ldots, u_{d}^{2}\right)}{2}
\end{aligned}
$$

$u_{1} z$	$u_{2} z$	$u_{3} z$	$u_{4} z$	$u_{5} z$	$u_{6} z$	$u_{7} z$	$u_{8} z$	$u_{9} z$	$u_{10} z$
0.005	0.015	0.025	0.035	0.044	0.054	0.063	0.072	0.081	0.09

Table 2: Numerical values for arguments

Application 4. RNA folding design

Application 4: RNA folding design

[Hammer, Ponty, Wang, Will '2019]

- Problem. Given the set of allowed secondary structures $\left(s_{1}, \cdots, s_{k}\right)$, sample uniformly at random RNA satisfying each of those structures.
- Proposition. The problem is equivalent to enumerating independent sets in bipartite graphs

Application 4: RNA folding design

image taken from [Hammer, Ponty, Wang, Will '2019]

Step 1: construct a graph based on secondary structures

Application 4: RNA folding design

image taken from [Hammer, Ponty, Wang, Will '2019]

Step 2: construct a suitable tree decomposition and a context-free grammar

$$
m_{\{u g e\} \rightarrow\{p g u\}}\left(x_{g}, x_{u}\right)=\sum_{\text {allowed } x_{e}}\left(m_{\{u e a\} \rightarrow\{u g e\}}\left(x_{u}, x_{e}\right)\right)\left(m_{\{e s\} \rightarrow\{u g e\}}\left(x_{e}\right)\right)
$$

Application 4: RNA folding design

image taken from [Hammer, Ponty, Wang, Will '2019]
Step 3: add the parameters

- each secondary structure energy (marked by u_{c})
- letter frequency

$$
m_{u \rightarrow v}(x)=\sum_{\widetilde{x}} \prod_{w \rightarrow u} m_{w \rightarrow u}(x, \widetilde{x}) \times u_{c}^{- \text {energy of added edge }}
$$

Application 4: RNA folding design

image taken from [Hammer, Ponty, Wang, Will '2019]
Conclusion:

- The energies of the secondary structures and letter frequencies can be tuned
- This can be subsequently refined to energies of adjacent pairs in RNA sequence, triples, etc.
- Empirically observed energy distributions are Gaussian

Application 5: Bose-Einstein condensate in quantum harmonic oscillator

Bianconi-Barabási model

An evolving network can be compared to a diluted gas at low temperature

Bose-Einstein condensation in evolving networks

Bianconi-Barabási model

Bose gas
temperature
energy
particle
number of energy levels
Bose-Einstein condensation

network evolution
temperature
energy
half-edge
\leqslant number of nodes
topological phase transition
In this model, the number of particles on the energy level
ε follows the Bose statistics $n(\varepsilon)=$ $\frac{1}{e^{\beta(\varepsilon-\mu)}-1}$ which also represents the number of edges linking to nodes with energy ε.

Application 5: Bose-Einstein condensate in quantum harmonic oscillator
 [Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]

Integer partitions \leftrightarrow 1-dimensional quantum oscillator

$$
16=1+3+3+4+5
$$

partitions $=\operatorname{multiset}(\mathbb{N})=\operatorname{multiset}(\operatorname{multiset}(1))$

Application 5: Bose-Einstein condensate in quantum

 harmonic oscillator[Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]
Coloured partitions $\leftrightarrow \mathbf{d}$-dimensional quantum oscillator coloured partitions $=\operatorname{multiset}\binom{\mathbb{N}+d-1}{\mathbb{N}}=\operatorname{MSet}(\operatorname{MSet}(d \cdot 1))$

Application 5: Bose-Einstein condensate in quantum harmonic oscillator
 [Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]

Coloured partitions $\leftrightarrow \mathbf{d}$-dimensional quantum oscillator
Weighted partition Random particle assembly

Sum of numbers
Number of colours
Row of Young table
Number of rows
Number of squares in the row
Partition limit shape

$$
\binom{d+\lambda-1}{\lambda}
$$

Total energy
Dimension (d)
Particle
Number of particles
Energy of a particle (λ)
Bose-Einstein condensation
Number of particle states

Problem: generate random assemblies with given numbers of colours ($n_{1}, n_{2}, \ldots, n_{d}$).

Application 5: Bose-Einstein condensate in quantum

 harmonic oscillator[Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]
Challenge: express the inner generating function

$$
\operatorname{MSET}\left(\bullet_{1}, \bullet_{2}, \cdots, \bullet_{\ell}\right)=\frac{1}{1-z_{1}} \cdot \frac{1}{1-z_{2}} \cdots \cdot \frac{1}{1-z_{\ell}}-1
$$

in DCP rules using only polynomial number of additions and multiplications.
Solution: convexity proof of length $\Theta\left(\ell^{2}\right)$ using dynamic programming.

(A) $[5,10,15,20,25]$

(в) $[4,4,4,4,10,20,30,40]$

(c) $[80,40,20,10,9,8,7,6,5]$

Application 6: Substitution-closed permutation classes

Simple permutations and inflations

- Simple permutation: does not contain intervals

$$
\{a, a+1, \ldots, b\} \rightarrow\{c, c+1, \ldots, d\}
$$

of length strictly between 1 and n. Permutation from the figure is not simple because it contains an interval $\{1,2,3\} \rightarrow\{5,6,7\}$.

- Inflation is obtained by replacing each entry by interval

Substitution-closed classes

Theorem (Albert, Atkinson '2005)
Let \mathcal{C} be substitution-closed and contain 12 and 21 . Let \mathcal{S} be the class of all simple permutations contained in \mathcal{C}. Then, \mathcal{C} satisfies

$$
\begin{aligned}
\mathcal{C} & =\{\bullet\}+12\left[\mathcal{C}^{+}, \mathcal{C}\right]+21\left[\mathcal{C}^{-}, \mathcal{C}\right]+\sum_{\pi \in \mathcal{S}} \pi[\mathcal{C}, \mathcal{C}, \ldots, \mathcal{C}] \\
\mathcal{C}^{+} & =\{\bullet\}+21\left[\mathcal{C}^{-}, \mathcal{C}\right]+\sum_{\pi \in \mathcal{S}} \pi[\mathcal{C}, \mathcal{C}, \ldots, \mathcal{C}] \\
\mathcal{C}^{-} & =\{\bullet\}+12\left[\mathcal{C}^{+}, \mathcal{C}\right]+\sum_{\pi \in \mathcal{S}} \pi[\mathcal{C}, \mathcal{C}, \ldots, \mathcal{C}] .
\end{aligned}
$$

Remark

Algorithm for computing specifications of permutation classes containing finitely many simple permutations is given in
[Bassino, Bouvel, Pierrot, Pivoteau, Rossin '2017]

Substitution-closed classes

Expected number of simple permutations $\pi \in \mathcal{S}$

$$
\begin{aligned}
\mathcal{C} & =\{\bullet\}+12\left[\mathcal{C}^{+}, \mathcal{C}\right]+21\left[\mathcal{C}^{-}, \mathcal{C}\right]+\sum_{\pi \in \mathcal{S}} u_{\pi} \pi[\mathcal{C}, \mathcal{C}, \ldots, \mathcal{C}] \\
\mathcal{C}^{+} & =\{\bullet\}+21\left[\mathcal{C}^{-}, \mathcal{C}\right]+\sum_{\pi \in \mathcal{S}} u_{\pi} \pi[\mathcal{C}, \mathcal{C}, \ldots, \mathcal{C}] \\
\mathcal{C}^{-} & =\{\bullet\}+12\left[\mathcal{C}^{+}, \mathcal{C}\right]+\sum_{\pi \in \mathcal{S}} u_{\pi} \pi[\mathcal{C}, \mathcal{C}, \ldots, \mathcal{C}] .
\end{aligned}
$$

By tuning the expectations attached to $\left(u_{\pi}\right)_{\pi \in S}$, we can alter the expected frequencies of inflation used during the construction of a permutation.

Conclusion

Conclusion

1. Boltzmann sampler is a fundamental tool for multiparametric sampling. The tuning procedure is very natural in many contexts.
2. Context-free unambiguous grammars are ubiquitous in many areas of mathematics, physics and computer science.
3. Behind the scenes:

- An $\mathcal{O}\left(n^{d / 2}\right)$ algorithm with $\mathcal{O}(\log n)$ memory for exact multiparametric sampling
- The tuning algorithm can be interpreted in terms of Maximum Likelihood Estimation for combinatorial objects
- Other frameworks: unlabelled structures and finite differential equations
- Other applications: multiclass queues, hidden parameter estimation, random graphs with weighted degrees and patterns
- Theory of self-concordant barriers for interior-point optimisation
- Precise expected complexity and fine-tuning for rejections

Thank you for your attention

