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First cycles ’1988



Directed graphs ’2020+
[de Panafieu, D., Ralaivaosaona, Rasendrahasina, Wagner]

Consider a random digraph from D(n, p) with n vertices, where each edge is drawn

independently with probability p and is assigned a random direction (Gilbert’s model).

I What is the probability that a digraph D(n, 1
n) is acyclic?

(2n)−1/3e3/2 1
2πi

∫ i∞

−i∞

1
Ai(−21/3s)

ds ≈ n−1/3 · 2.19037 . . .

I What is the probability that the strongly connected
components of a random digraph D(n, 1

n) are isolated vertices
or cycles?

−2−2/3 1
2πi

∫ i∞

−i∞

1
Ai′(−21/3s)

ds ≈ 0.69968786651 +O(n−1/3)

I What is the probability that there is one bicyclic strong
complex component in D(n, 1

n)?

1
8
· 1

2πi

∫ i∞

−i∞

Ai(−2; s)
Ai′(s)2 ds =

1
8

+O(n−1/3)



Part I. Back to the origin: generating functions



The cartesian product
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The convolution rule corresponding to EGF:

cn =
n∑

k=0

(
n
k

)
akbn−k



Directed graphs and their components

a�

b�

c� d�

I Components a� , b� ,

c� and d� are
strongly-connected
components.

I Components a� and d�
are source-like components

I Component c� is a
sink-like component



The arrow product

a ∈ A b ∈ B



The graphic generating function (GGF)
Let F be a family of digraphs and D ∈ F . Let n(D) denote the
number of vertices, and m(D) the number of edges of D.

Their EGF F (z,w) and GGF F̂ (z,w) are defined as

F (z,w) :=
∑
D∈F

zn(D)

n(D)!

wm(D)

m(D)!
, F̂ (z,w) :=

∑
D∈F

e−n(D)2w/2 z
n(D)

n(D)!

wm(D)

m(D)!

Proposition.

I F̂ (z,w) =
1√

2πw

∞∫
−∞

exp

(
− x2

2w

)
F (ze−ix ,w)dx.

I Gilbert’s random model Pn,p is equidistributed to a Boltzmann
distribution with parameter λ = pn on the set of all
multidigraphs.

Pn,p(D ∈ F) = e−pn
2/2n![zn]F̂ (z, p)



The graphic convolution product

(∑
n>0

an(w)e−n
2w/2 z

n

n!

)(∑
n>0

bn(w)e−n
2w/2 z

n

n!

)
=
∑
n>0

cn(w)e−n
2w/2 z

n

n!

a ∈ A b ∈ B

The convolution rule corresponding to GGF:

cn(w) =
∑

k+`=n

(
n
k

)
(ew)k`ak(w)b`(w).



Part II. Families of directed graphs
and their generating functions



The main enumeration theorem
Let S be a family of strongly connected digraphs, and let DS be the
family of digraphs whose components are constrained to S .

Theorem. GGF of DS is given by

D̂S(z,w) =
1

1√
2πw

+∞∫
−∞

exp

(
− x2

2w
− S(ze−ix ,w)

)
dx

.

Moreover, if u marks the source-like components, then

D̂S(z,w, u) =

1√
2πw

+∞∫
−∞

exp

(
− x2

2w
+ (u − 1)S(ze−ix ,w)

)
dx

1√
2πw

+∞∫
−∞

exp

(
− x2

2w
− S(ze−ix ,w)

)
dx

.



Proof of the main enumeration theorem

Proof. DS with distinguished source-like components is an arrow
product of a set of strong components and DS .

are from distinguished
source-like components.

are from the usual source-
like components.

I D̂S(z,w, u + 1) = êuS(z,w) · D̂S(z,w, 1).

I By le�ing u = −1, we obtain D̂S(z,w) =
1

̂e−S(z,w)
.

I By plugging u 7→ u − 1, we obtain D̂S(z,w, u) =
̂e(u−1)S(z,w)

̂e−S(z,w)
.



DAGs and elementary digraphs

Application 1. In DAGs, the only possible strong components are
isolated vertices, S(z,w) = z .

D̂DAG(z,w) =
1

1√
2πw

∞∫
−∞

exp

(
− x2

2w
− ze−ix

)
dx

.

Application 2. The elementary digraphs are those whose strong
components are isolated vertices or cycles, S(z,w) = z + ln 1

1−zw .

D̂elem(z,w) =
1

1√
2πw

∞∫
−∞

1− zwe−ix

exp

(
x2

2w
+ ze−ix

)dx

.



Complex components

The EGF of strong components of excess r is

Strongr(z,w) = srwr (zw)2r

(1− zw)3r + wr Qr(zw)

(1− zw)3r−1 .

(sr)∞r=1 =

(
1
2
,

17
8
,

275
12
,

26141
64

,
1630711

160
, . . .

)
.



Elementary digraphs with one bicyclic component
Application 3. Let Ĥbicycle be the GGF of elementary digraphs with
one bicyclic component. Then,

Ĥbicycle(z,w) ∼

1√
2πw

∞∫
−∞

1
2

w3z2e−2ix

(1− zwe−ix)2 e
− x2

2w−ze
−ix

dx

 1√
2πw

∞∫
−∞

(1− zwe−ix)e−
x2

2w−ze
−ix

dx

2 .

Proof. Apply the enumeration theorem with

S(z,w, v) := z + ln
1

1− zw
+ v · Sbicycle(z,w),

where

Sbicycle(z,w) =
1
2

(
w3z2

(1− zw)3 +
w2z

(1− zw)2

)
and extract [v1].



Source-like complex component

Generalised enumeration theorem. Let S andH be two disjoint
families of strongly connected digraphs, and let DS,H be the family
of digraphs whose components are contrained to S andH. Let u
and v mark source-like components from S andH. Then,

D̂S,H(z,w,u, v) =

+∞∫
−∞

exp

(
− x2

2w
+ (u− 1)S(ze−ix ,w) + (v− 1)H(ze−ix ,w)

)
dx

+∞∫
−∞

exp

(
− x2

2w
− S(ze−ix ,w)− H(ze−ix ,w)

)
dx

Application 4. GGF of elementary digraphs with one source-like
complex component from S is

WS(z,w) =

+∞∫
−∞

exp

(
− x2

2w

)
S(ze−ix ,w)dx

+∞∫
−∞

(1− zwe−ix) exp

(
− x2

2w
− ze−ix − S(ze−ix ,w)

)
dx

Proof. Take H(z,w) = z + ln 1
1−zw . Put v = 1 and extract [u1].



Part III. Asymptotic analysis



Asymptotic analysis: general scheme
I The probabilities of interest can be expressed as

Pn,p(D ∈ F) = e−pn
2/2n![zn]F̂ (z, p).

I [zn]F̂ (z, p) =
1

2πi

∮
|z|=R

F̂ (z, p)

zn+1 dz .

I For a given value of p→ 0+, and for z fixed, find an asymptotic
approximation of F̂ (z, p).

I F̂ (z, p) is a product of integrals itself, each integral over R.
I Change the contour: preserve the starting and the finishing

points, but let it pass through x = x0 ∈ iR in the middle.
I The dominant contribution is around x = x0 + ε.

i
x0

Horizontal Path.

−
√

3
√

3

i

Path Γ.

I Dominant part of [zn]F̂ (z, p) is when z is around R ± 0i.



Asymptotics of the deformed exponent
Let T (zw) and U(zw) be the EGF of rooted and unrooted trees.

φ(z,w) :=
1√

2πw

∫ +∞

−∞
exp

(
− x2

2w
− ze−ix

)
dx =

∑
n>0

e−n
2w/2 (−z)n

n!
.

(a) If zw ∈ [0, e−1), then φ(z,w) ∼ e−U(zw)/w√
1− T (zw)

(b) If 1− ezw = θw2/3, θ →∞, then

φ(z,w) ∼ (2θ)−1/4w−1/6 exp

(
− 1

2w
+

θ

w1/3
− 23/2

3
θ3/2

)

(c) If 1− ezw = θw2/3, θ ∈ C, then

φ(z,w) ∼ 25/6π1/2w−1/6Ai(21/3θ) exp

(
− 1

2w
+

θ

w1/3

)
.



Generalised Airy function

The Airy function satisfies a linear di�erential equation

Ai(z)′′ − zAi(z) = 0

It can be expressed as an integral and its derivatives as well

∂rzAi(z) =
(−1)r

2πi

∫ +i∞

−i∞
tr exp(−zt + t3/3)dt.

It is natural to extend this definition, so that
r ∈ Z and deform the contour a li�le bit:

Ai(r; z) :=
(−1)r

2πi

∫
t∈Π(ϕ)

tr exp(−zt+t3/3)dt.

ϕ



Generalised deformed exponent

Let T (zw) and U(zw) be the EGF of rooted and unrooted trees.

ψr(z,w) :=
1√

2πw

∫ +∞

−∞
(1− zwe−ix)r exp

(
− x2

2w
− ze−ix

)
dx.

(a) If zw ∈ [0, e−1), then ψr(z,w) ∼ e−U(zw)/w(1− T (zw))r−1/2

(b) If 1− ezw = θw2/3, θ →∞, then

ψr(z,w) ∼ (2θ)r/2−1/4wr/3−1/6 exp

(
− 1

2w
+

θ

w1/3
− 23/2

3
θ3/2

)

(c) If 1− ezw = θw2/3, θ ∈ C, then

ψr(z,w) ∼ C · Dr · w−1/6+r/3Ai(r; 21/3θ) exp

(
− 1

2w
+

θ

w1/3

)
.



Computing the asymptotic probabilities

Theorem. In the multidigraph model, when p = 1
n(1 + µn−1/3),

I Pn,p(Dn,p is acyclic) ∼ (2n)−1/3 · 1
2πi

i∞∫
−i∞

e−µs−µ
3/6

Ai(−21/3s)
ds

I Pn,p(Dn,p is elementary) ∼ −2−2/3 · 1
2πi

i∞∫
−i∞

e−µs−µ
3/6

Ai′(−21/3s)
ds

The probability to have one complex component of excess r is
asymptotically equal to

Pn,p(·) ∼ sr · C · Dr · 1
2πi

i∞∫
−i∞

Ai(1− 3r;−21/3s)
(Ai′(−21/3s))2

e−µs−µ
3/6ds.



Outside the critical window

I When p = λn−1, λ < 1, the probabilities can be obtained by
applying large powers theorem to

ψr(z,w) ∼ e−U(zw)/w(1− T (zw))r−1/2

for zw < e−1.
I When p = λn−1, λ > 1, the knowledge of the roots of ψr(z,w)

is su�icient.
I When p = n−1(1 + µn−1/3), and µ→ −∞, we can apply

semi-large powers theorem.

Pn,p(Dn,p is elementary) ∼ 1− 1
2|µ|3

+O(|µ|−6)



Part IV. Multidigraphs and simple digraphs.



Simple digraphs and multidigraphs

The basic deformed exponent corresponding to simple digraphs is

φ(simple)(z,w) = φ(z
√

1 + w, log(1 + w)).

Elementary digraphs can be adjusted by forbidding loops and
2-cycles which yields

S(z,w) = z + ln
1

1− zw
− zw − (zw)2

2
.

All the obtained asymptotic approximations can be readily used to
obtain the asymptotics of simple digraphs directly.



Simple digraphs and multidigraphs
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Part V. Numerical results



Empirical results for di�erent families



Empirical results for di�erent families



One bicyclic component
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Bonus. A mysterious connection



Maximum of Brownian motion with parabolic dri�
[Knessl’2000],[Janson,Louchard,Martin-Löf’2010],[Janson’2012]

A special function

Q(x, µ) := eµx22/3 1
2πi

∫ i∞

−i∞
eµτ−µ

3/6Ai(21/3(x + τ))

Ai(21/3τ)2
dτ

arises as a solution to the system of partial di�erential equations
Qµ = 1

2Qxx − µQx , −∞ < µ <∞, x > 0;
1
2Qx(0, µ)− µQ(0, µ) = 0, −∞ < µ <∞;

Q → δ(x), µ→ −∞.

I When x = 0, this corresponds to critical DAGs.
I What corresponds to Taylor expansion at x = 0?



Conclusion



Conclusion
1. The phase transition curves for DAG, elementary digraphs and

analysis of complex components is finally completed. The
technique encompasses di�erent digraph models (with or
without loops or 2-cycles) and gives precise results for them.

2. Still a lot of questions open (and probably doable!):
I Statistics of random DAGs (sinks, sources)
I Asymptotics of strongly connected graphs
I Simultaneous asymptotics of sink-like and source-like

components
I Cubic kernels (digraphs)
I Digraphs with degree contraints
I Giant component of a digraph
I Triple, quadruple arrow product?
I Analysis of 2-SAT with similar level of precision
I . . . (enough for a PhD thesis or more) . . .

3. Mysterious connection with maxima of Brownian motions?

Thank you for your a�ention.


