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First cycles ’1988



Directed graphs ’2020+
[de Panafieu, D., Ralaivaosaona, Rasendrahasina, Wagner]

Consider a random digraph from D(n, p) with n vertices, where each edge is drawn

independently with probability p and is assigned a random direction (Gilbert’s model).

I What is the probability that a digraph D(n, 1
n) is acyclic?

(2n)−1/3e3/2 1
2πi

∫ i∞

−i∞

1
Ai(−21/3s)

ds ≈ n−1/3 · 2.19037 . . .

I What is the probability that the strongly connected
components of a random digraph D(n, 1

n) are isolated vertices
or cycles?

−2−2/3 1
2πi

∫ i∞

−i∞

1
Ai′(−21/3s)

ds ≈ 0.69968786651 +O(n−1/3)



Part I. Back to the origin: generating functions



The cartesian product
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The convolution rule corresponding to EGF:

cn =
n∑

k=0

(
n
k

)
akbn−k



Directed graphs and their components

a�

b�

c� d�

I Components a� , b� ,

c� and d� are
strongly-connected
components.

I Components a� and d�
are source-like components

I Component c� is a
sink-like component



The arrow product

a ∈ A b ∈ B



The graphic generating function (GGF)
Let F be a family of digraphs and D ∈ F . Let n(D) denote the
number of vertices, and m(D) the number of edges of D.

Their EGF F (z,w) and GGF F̂ (z,w) are defined as

F (z,w) :=
∑
D∈F

zn(D)

n(D)!

wm(D)

m(D)!
, F̂ (z,w) :=

∑
D∈F

e−n(D)2w/2 z
n(D)

n(D)!

wm(D)

m(D)!

Proposition.

I F̂ (z,w) =
1√

2πw

∞∫
−∞

exp

(
− x2

2w

)
F (ze−ix ,w)dx.

I Gilbert’s random model Pn,p is equidistributed to a Boltzmann
distribution with parameter λ = pn on the set of all
multidigraphs.

Pn,p(D ∈ F) = e−pn
2/2n![zn]F̂ (z, p)



The graphic convolution product

(∑
n>0

an(w)e−n
2w/2 z

n

n!

)(∑
n>0

bn(w)e−n
2w/2 z

n

n!

)
=
∑
n>0

cn(w)e−n
2w/2 z

n

n!

a ∈ A b ∈ B

The convolution rule corresponding to GGF:

cn(w) =
∑

k+`=n

(
n
k

)
(ew)k`ak(w)b`(w).



Part II. Families of directed graphs
and their generating functions



The main enumeration theorem
Let S be a family of strongly connected digraphs, and let DS be the
family of digraphs whose components are constrained to S .

Theorem. GGF of DS is given by

D̂S(z,w) =
1

1√
2πw

+∞∫
−∞

exp

(
− x2

2w
− S(ze−ix ,w)

)
dx

.

Moreover, if u marks the source-like components, then

D̂S(z,w, u) =

1√
2πw

+∞∫
−∞

exp

(
− x2

2w
+ (u − 1)S(ze−ix ,w)

)
dx

1√
2πw

+∞∫
−∞

exp

(
− x2

2w
− S(ze−ix ,w)

)
dx

.



Proof of the main enumeration theorem

Proof. DS with distinguished source-like components is an arrow
product of a set of strong components and DS .

are from distinguished
source-like components.

are from the usual source-
like components.

I D̂S(z,w, u + 1) = êuS(z,w) · D̂S(z,w, 1).

I By le�ing u = −1, we obtain D̂S(z,w) =
1

̂e−S(z,w)
.

I By plugging u 7→ u − 1, we obtain D̂S(z,w, u) =
̂e(u−1)S(z,w)

̂e−S(z,w)
.



DAGs and elementary digraphs

Application 1. In DAGs, the only possible strong components are
isolated vertices, S(z,w) = z .

D̂DAG(z,w) =
1

1√
2πw

∞∫
−∞

exp

(
− x2

2w
− ze−ix

)
dx

.

Application 2. The elementary digraphs are those whose strong
components are isolated vertices or cycles, S(z,w) = z + ln 1

1−zw .

D̂elem(z,w) =
1

1√
2πw

∞∫
−∞

1− zwe−ix

exp

(
x2

2w
+ ze−ix

)dx

.



Complex components

The EGF of strong components of excess r is

Strongr(z,w) = srwr (zw)2r

(1− zw)3r + wr Qr(zw)

(1− zw)3r−1 .

(sr)∞r=1 =

(
1
2
,

17
8
,

275
12
,

26141
64

,
1630711

160
, . . .

)
.



Elementary digraphs with one bicyclic component
Application 3. Let Ĥbicycle be the GGF of elementary digraphs with
one bicyclic component. Then,

Ĥbicycle(z,w) ∼

1√
2πw

∞∫
−∞

1
2

w3z2e−2ix

(1− zwe−ix)2 e
− x2

2w−ze
−ix

dx

 1√
2πw

∞∫
−∞

(1− zwe−ix)e−
x2

2w−ze
−ix

dx

2 .

Proof. Apply the enumeration theorem with

S(z,w, v) := z + ln
1

1− zw
+ v · Sbicycle(z,w),

where

Sbicycle(z,w) =
1
2

(
w3z2

(1− zw)3 +
w2z

(1− zw)2

)
and extract [v1].



Source-like complex component

Generalised enumeration theorem. Let S andH be two disjoint
families of strongly connected digraphs, and let DS,H be the family
of digraphs whose components are contrained to S andH. Let u
and v mark source-like components from S andH. Then,

D̂S,H(z,w,u, v) =

+∞∫
−∞

exp

(
− x2

2w
+ (u− 1)S(ze−ix ,w) + (v− 1)H(ze−ix ,w)

)
dx

+∞∫
−∞

exp

(
− x2

2w
− S(ze−ix ,w)− H(ze−ix ,w)

)
dx

Application 4. GGF of elementary digraphs with one source-like
complex component from S is

WS(z,w) =

+∞∫
−∞

exp

(
− x2

2w

)
S(ze−ix ,w)dx

+∞∫
−∞

(1− zwe−ix) exp

(
− x2

2w
− ze−ix − S(ze−ix ,w)

)
dx

Proof. Take H(z,w) = z + ln 1
1−zw . Put v = 1 and extract [u1].



Part III. Asymptotic analysis



Asymptotic analysis: general scheme
I The probabilities of interest can be expressed as

Pn,p(D ∈ F) = e−pn
2/2n![zn]F̂ (z, p).

I [zn]F̂ (z, p) =
1

2πi

∮
|z|=R

F̂ (z, p)

zn+1 dz .

I For a given value of p→ 0+, and for z fixed, find an asymptotic
approximation of F̂ (z, p).

I F̂ (z, p) is a product of integrals itself, each integral over R.
I Change the contour: preserve the starting and the finishing

points, but let it pass through x = x0 ∈ iR in the middle.
I The dominant contribution is around x = x0 + ε.

i
x0

Horizontal Path.

−
√

3
√

3

i

Path Γ.

I Dominant part of [zn]F̂ (z, p) is when z is around R ± 0i.



Asymptotics of the deformed exponent
Let T (zw) and U(zw) be the EGF of rooted and unrooted trees.

φ(z,w) :=
1√

2πw

∫ +∞

−∞
exp

(
− x2

2w
− ze−ix

)
dx =

∑
n>0

e−n
2w/2 (−z)n

n!
.

(a) If zw ∈ [0, e−1), then φ(z,w) ∼ e−U(zw)/w√
1− T (zw)

(b) If 1− ezw = θw2/3, θ →∞, then

φ(z,w) ∼ (2θ)−1/4w−1/6 exp

(
− 1

2w
+

θ

w1/3
− 23/2

3
θ3/2

)

(c) If 1− ezw = θw2/3, θ ∈ C, then

φ(z,w) ∼ 25/6π1/2w−1/6Ai(21/3θ) exp

(
− 1

2w
+

θ

w1/3

)
.



Generalised Airy function

The Airy function satisfies a linear di�erential equation

Ai(z)′′ − zAi(z) = 0

It can be expressed as an integral and its derivatives as well

∂rzAi(z) =
(−1)r

2πi

∫ +i∞

−i∞
tr exp(−zt + t3/3)dt.

It is natural to extend this definition, so that
r ∈ Z and deform the contour a li�le bit:

Ai(r; z) :=
(−1)r

2πi

∫
t∈Π(ϕ)

tr exp(−zt+t3/3)dt.

ϕ



Generalised deformed exponent

Let T (zw) and U(zw) be the EGF of rooted and unrooted trees.

ψr(z,w) :=
1√

2πw

∫ +∞

−∞
(1− zwe−ix)r exp

(
− x2

2w
− ze−ix

)
dx.

(a) If zw ∈ [0, e−1), then ψr(z,w) ∼ e−U(zw)/w(1− T (zw))r−1/2

(b) If 1− ezw = θw2/3, θ →∞, then

ψr(z,w) ∼ (2θ)r/2−1/4wr/3−1/6 exp

(
− 1

2w
+

θ

w1/3
− 23/2

3
θ3/2

)

(c) If 1− ezw = θw2/3, θ ∈ C, then

ψr(z,w) ∼ C · Dr · w−1/6+r/3Ai(r; 21/3θ) exp

(
− 1

2w
+

θ

w1/3

)
.



Computing the asymptotic probabilities

Theorem. In the multidigraph model, when p = 1
n(1 + µn−1/3),

I Pn,p(Dn,p is acyclic) ∼ (2n)−1/3 · 1
2πi

i∞∫
−i∞

e−µs−µ
3/6

Ai(−21/3s)
ds

I Pn,p(Dn,p is elementary) ∼ −2−2/3 · 1
2πi

i∞∫
−i∞

e−µs−µ
3/6

Ai′(−21/3s)
ds

The probability to have one complex component of excess r is
asymptotically equal to

Pn,p(·) ∼ sr · C · Dr · 1
2πi

i∞∫
−i∞

Ai(1− 3r;−21/3s)
(Ai′(−21/3s))2

e−µs−µ
3/6ds.



Outside the critical window

I When p = λn−1, λ < 1, the probabilities can be obtained by
applying large powers theorem to

ψr(z,w) ∼ e−U(zw)/w(1− T (zw))r−1/2

for zw < e−1.
I When p = λn−1, λ > 1, the knowledge of the roots of ψr(z,w)

is su�icient.
I When p = n−1(1 + µn−1/3), and µ→ −∞, we can apply

semi-large powers theorem.

Pn,p(Dn,p is elementary) ∼ 1− 1
2|µ|3

+O(|µ|−6)



Part IV. Instead of the Post-Scriptum. The elusive coe�icients sr .



A few more theorems

Theorem. Let p = n−1(1 + µn−1/3). The probability that there are
only bicyclic complex components (each weighted with u), is

Pn,p ∼
C

2πi

i∞∫
−i∞

1∫
Π(ϕ) te

−21/3st+t3/3 exp

(
−1
4t3 u

)
dt
ds.

More generally, if multicyclic components are allowed, each marked
with ur corresponding to an excess r , the series will be

Pn,p ∼
C

2πi

i∞∫
−i∞

1∫
Π(ϕ) te

−21/3st+t3/3−V(u1,u2,...;t)dt
ds,

where
V (u1, u2, . . . ; t) :=

s1u1

2t3 +
s2u2

4t6 +
s3u3

8t9 + . . .



Bootstrapping sr

Let p = n−1(1 + µn−1/3). The coe�icients sr can be bootstrapped by
considering asymptotic expansions in powers of µ−3 around
µ→ −∞.

I First, forbid the complex components at all. We obtain

Pn,p(Dn,p is elementary) ∼ 1− 1
2|µ|3

+
?

|µ|6
+ . . .

I Then, the probability of having only bicyclic components is

Pn,p(Dn,p has only bicyclic c.c.) ∼ sr

(
1
|µ|3

+
?

|µ|6
+ . . .

)
I Adding the component of excess r , and summing up the

coe�icients at |µ|−3r , we obtain the sequence.



Conclusion



Conclusion

1. The phase transition curves for DAG, elementary digraphs and
analysis of complex components can be finally completed.

2. The technique is highly flexible with respect to di�erent
digraph models (with or without loops or 2-cycles)

3. Still a lot of questions open (and probably doable!):
I Statistics of random DAGs (sinks, sources)
I Asymptotics of strongly connected graphs
I Simultaneous asymptotics of sink-like and source-like

components
I Cubic kernels (digraphs)
I Digraphs with degree contraints
I Giant component of a digraph
I Triple, quadruple arrow product?
I Analysis of 2-SAT with similar level of precision
I . . . (enough for a PhD thesis or so) . . .

Thank you for your a�ention.



Bonus 1. Saddle point analysis

The target generalised integral is given by

I =

∫
h(x0 + t)ref (x0+t)dt,

where

f (x) = − x2

2w
− ze−ix , h(x) = 1− zwe−ix .

The stationary point is defined by relation

f ′(x) = 0 ⇔ x0 = iT (zw).

The second derivative of f (x) vanishes when zw = e−1 which also
corresponds to p = n−1. The limiting stationary point is x0 = i.



Bonus 2. Simple digraphs and multidigraphs

The basic deformed exponent corresponding to simple digraphs is

φ(simple)(z,w) = φ(z
√

1 + w, log(1 + w)).

Elementary digraphs can be adjusted by forbidding loops and
2-cycles which yields

S(z,w) = z + ln
1

1− zw
− zw − (zw)2

2
.

All the obtained asymptotic approximations can be readily used to
obtain the asymptotics of simple digraphs directly.



Bonus 3. Product decomposition

The denominator of the GGF of DAGs can be expressed in terms of
the EGF of all the graphs.

φ(z,w) =
∑
n>0

e−n
2w/2 (−z)n

n!
= MG(−z,−w)

= e−U(zw)/w+V(zw)
∑
k>0

Complexk(zw)(−w)k

This allows to express both the asymptotic of DAGs and elementary
digraphs as an infinite sum, because

DDAG(z,w) =
1

MG(−z,−w)
and Delem(z,w) =

1
MG(−z,−w) + zw∂zMG(−z,−w)

.


