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First cycles 1988

The First Cycles in an Evolving Graph
PHILIPPE FLAJOLET, DoNALD E. KNUTH AND BORIS PITTEL

The purpose of this paper is to introduce analytical methods by which such questions
can be answered systematically. In particular, we will apply the ideas to an interesting
question posed by Paul Erdés and communicated by Edgar Palmer to the 1985 Seminar
on Random Graphs in Posnaf: “What is the expected length of the first cycle in an
evolving graph?” The answer turns out to be rather surprising: The first cycle has length
Kn'/® + O(n'/®) on the average, where
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The form of this result suggests that the expected behavior may be quite difficult to derive

using techniques that do not use contour integration.




Directed graphs 2020+

[de Panafieu, D., Ralaivaosaona, Rasendrahasina, Wagner]

Consider a random digraph from D(n, p) with n vertices, where each edge is drawn

independently with probability p and is assigned a random direction (Gilbert’s model).

» What is the probability that a digraph D(n, 1) is acyclic?

n
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» What is the probability that the strongly connected
components of a random digraph D(n, %) are isolated vertices
or cycles?
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Part I. Back to the origin: generating functions



The cartesian product
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The convolution rule corresponding to EGF:
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Directed graphs and their components
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The arrow product




The graphic generating function (GGF)

Let F be a family of digraphs and D € F. Let n(D) denote the
number of vertices, and m(D) the number of edges of D.

Their EGF F(z, w) and GGF F(z, w) are defined as

ot sy 270) (D)

F(z,w) = Z (D)l m(D)! F(z,w) = Z e n(D)w/ (D) m(D)!

ﬁ exp< )F(ze—’X,w)dx.

» Gilbert’s random model P, is equidistributed to a Boltzmann
distribution with parameter A = pn on the set of all
multidigraphs.

Pop(D € F) = e P"/2nl[2"|F(z. p)



The graphic convolution product
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The convolution rule corresponding to GGF:

aln) = 3 () a(mbw)
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Part 1l. Families of directed graphs
and their generating functions



The main enumeration theorem
Let S be a family of strongly connected digraphs, and let Ds be the

family of digraphs whose components are constrained to S.
Theorem. GGF of Dg is given by

—~ 1
Ds(z,w) =

Moreover, if u marks the source-like components, then

\/F exp <— + (u—1)S(ze ™, w)> dx

Bg(z, w,u) =




Proof of the main enumeration theorem

Proof. Ds with distinguished source-like components is an arrow
product of a set of strong components and Ds.

': O,: are from distinguished
source-like components.
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! \

' O rare from the usual source-
—_—— 4

like components.

» Ds(z,w,u+ 1) = euS(zw) . Dg(z, w, 1).
1

> By letting u = —1, we obtain Bg(z, W) = ———.
efS(z,w)
N e(“_/ns\(sz)
» By plugging u+— u — 1, we obtain Dg(z, w, u) = ————.

e—S(z,w)



DAGs and elementary digraphs

Application 1. In DAGs, the only possible strong components are
isolated vertices, S(z, w) = z.

1

\/F/ep<__ze >dx

Application 2. The elementary digraphs are those whose strong
components are isolated vertices or cycles, S(z, w) =

5DAG(Z7 W)
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Complex components

The Birth of the Giant Component
Dedicated to Paul Erdés on his 80th birthday

Svante Janson, Donald E. Knuth, Tomasz Luczak, and Boris Pittel

Is there a simple recurrence governing the leading coefficients s19, s, $30, . . -, perhaps
analogous to the relation we observed for ordinary connected components in (8. 5)'7
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The EGF of strong components of excess r is

(2w . Qdew)

(1— zw)3r (1— zw)3r—1"

r

Strong,(z, w) = s;w

. 1 17 275 26141 1630711
(Sf)r=1 = PP ) 9 PR
2 8 12 64 160



Elementary digraphs with one bicyclic component
Application 3. Let Flbicycle be the GGF of elementary digraphs with
one bicyclic component. Then,

w3zle 2 X i
2w dx
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Proof. Apply the enumeration theorem with

1
S(z,w,v) :=z+In ] ” + V- Spicycle(2, W),

where
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1
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and extract [v'].



Source-like complex component

Generalised enumeration theorem. Let S and H be two disjoint
families of strongly connected digraphs, and let Ds 3, be the family
of digraphs whose components are contrained to S and H. Let u

and v mark source-like components from S and H. Then,
+o00

/ exp (—% + (u = 1)S(ze™™, w) + (v — 1)H(ze™™, w)> dx

~ —00

Dsy(z,w,u,v) =

+o0

2 . ..
/ exp (f;—w — S(ze™™, w) — H(ze™ ™, w)) dx

Application 4. GGF of elementary digraphs with one source-like

complex component from § is
+o00
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WS(27 W) =

+oo R
/ (1 — zwe ™) exp <—;—W —ze™ % — S(ze™ ¥, W)) dx
—00

Proof. Take H(z,w) = z + In ——. Put v = 1 and extract [u'].

T—zw"’




Part Ill. Asymptotic analysis



Asymptotic analysis: general scheme

» The probabilities of interest can be expressed as
Pop(D € F) = e P"2nl[2"|F(z, p).

- 1 F(z,p
> [Z"]F(z,p) = %R inH)dz.

2mi
» For a given value of p — 0T, and for z fixed, find an asymptotic

approximation of F(z, p).
> ?‘(z7 p) is a product of integrals itself, each integral over R.
» Change the contour: preserve the starting and the finishing
points, but let it pass through x = x; € iR in the middle.
» The dominant contribution is around x = xy + €.

e
o :

Horizontal Path. PathT.

» Dominant part of [z"]F(z, p) is when z is around R + 0i.



Asymptotics of the deformed exponent
Let T(zw) and U(zw) be the EGF of rooted and unrooted trees.

2
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() If 1 — ezw = Ow?/3, 0 € C, then
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B(z, w) ~ 2557120 1/0 Ai(2'/30) exp <_21 + d ) .
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Generalised Airy function
The Airy function satisfies a linear differential equation
Ai(z)" — zAi(z) = 0

It can be expressed as an integral and its derivatives as well

ras: (_1)r Hieo r 3
orAi(z) = S / " exp(—zt + £2/3)dt.

211 i

It is natural to extend this definition, so that
r € Z and deform the contour a little bit: // \ ©

Ai(r; z) == (_U/t » )tr exp(—zt+t/3)dt. \
en(y
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Generalised deformed exponent

Let T(zw) and U(zw) be the EGF of rooted and unrooted trees.

2
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Yz, w) 1— zwe ™) exp <_2W - ze’x) dx.

=

(a) If zw € [0, ™), then t,(z, w) ~ e~ V)% (1 — T(zw))~1/2
(b) If 1 — ezw = Ow?/3, 6 — oo, then
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Computing the asymptotic probabilities

Theorem. In the multidigraph model, when p = 1(1 4 pn~1/3),

n
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The probability to have one complex component of excess r is
asymptotically equal to

ioo ( 1/3
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Outside the critical window

» When p = An~', X\ < 1, the probabilities can be obtained by
applying large powers theorem to

Ue(z, w) ~ e_U(ZW)/W(1 _ T(ZW))’_Vz

for zw < e .

» When p = An"", A > 1, the knowledge of the roots of 1,(z, w)
is sufficient.

» When p=n~"(1+ un~"/?), and  — —o0, we can apply
semi-large powers theorem.

Ps,p(Dn,p is elementary) ~ 1 — +O(|p|™%)

:
2|pP?



Part IV. Instead of the Post-Scriptum. The elusive coefficients s,.



A few more theorems

Theorem. Let p = n~'(1+ pn~'/3). The probability that there are
only bicyclic complex components (each weighted with u), is

ico

C 1
]P)mp ~ T / 1 ds.
i )dt

. —21/3st4+£3/3 _
oo fl'l(go) te st+t3/ exp <4t3 u

More generally, if multicyclic components are allowed, each marked
with u, corresponding to an excess r, the series will be

ds,
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Bootstrapping s,

Let p = n'(14 pn~'/3). The coefficients s, can be bootstrapped by
considering asymptotic expansions in powers of 3 around
p — —0o.

> First, forbid the complex components at all. We obtain

?

]
Ps.p(Dn,p is elementary) ~ 1 — —— + I

2pP - ple

> Then, the probability of having only bicyclic components is

1 ?
Py p(Dnp has only bicyclic c.c.) ~ s, < + — +.. >
POnp AN

» Adding the component of excess r, and summing up the
coefficients at |u| 3", we obtain the sequence.



Conclusion



Conclusion

1.

The phase transition curves for DAG, elementary digraphs and
analysis of complex components can be finally completed.

The technique is highly flexible with respect to different
digraph models (with or without loops or 2-cycles)

>

>

>
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. Still a lot of questions open (and probably doable!):

Statistics of random DAGs (sinks, sources)
Asymptotics of strongly connected graphs
Simultaneous asymptotics of sink-like and source-like
components

Cubic kernels (digraphs)

Digraphs with degree contraints

Giant component of a digraph

Triple, quadruple arrow product?

Analysis of 2-SAT with similar level of precision
...(enough for a PhD thesis or so) ...

Thank you for your attention.



Bonus 1. Saddle point analysis

The target generalised integral is given by
I = / h(xo + t)"e o0t

where

X2

flx) = “ow ze™™  h(x) =1— zwe ™.

The stationary point is defined by relation
flx)=0 & x =iT(zw).

The second derivative of f(x) vanishes when zw = e~ which also
corresponds to p = n~'. The limiting stationary point is xo = i.



Bonus 2. Simple digraphs and multidigraphs

The basic deformed exponent corresponding to simple digraphs is
PP (7. w) = p(zv/1+ w, log(1 + w)).

Elementary digraphs can be adjusted by forbidding loops and
2-cycles which yields

S = |
(z,w) =z + no—

All the obtained asymptotic approximations can be readily used to
obtain the asymptotics of simple digraphs directly.



Bonus 3. Product decomposition

The denominator of the GGF of DAGs can be expressed in terms of
the EGF of all the graphs.

_ —nZW/Z(_Z)n _ o
o(z, w) ; e — MG(—z,—w)
— ¢~ Ulaw)/wV(zw) Z Complex, (zw)(—w)*

k>0

This allows to express both the asymptotic of DAGs and elementary
digraphs as an infinite sum, because

1 1

D - D, = ~
pac(z, w) MG(—z, —w) and  Deten(z, W) MG(—z,—w) + zwI,MG(—2z, —w)




