Counting directed acyclic and elementary digraphs (by Élie de Panafieu and Sergey Dovgal)

- Exponential generating function:
- Directed acyclic graphs: stronly connected components are vertices
- Elementary digraphs: strongly connected components are vertices and cycles
- $a_{n, m}:=$ the number of digraphs with n vertices and m edges from a given family.

$$
A(z, w):=\sum_{n, m} a_{n, m} w^{m} \frac{z^{n}}{n!}
$$

- Graphic generating function:

$$
\boldsymbol{A}(z, w):=\sum_{n, m} a_{n, m} w^{m} \frac{z^{n}}{n!(1+w)^{\binom{n}{2}}}
$$

- Exponential Hadamard product:

$$
\left(\sum_{n \geqslant 0} a_{n} \frac{z^{n}}{n!}\right) \odot_{z}\left(\sum_{n \geqslant 0} b_{n} \frac{z^{n}}{n!}\right)=\sum_{n \geqslant 0} a_{n} b_{n} \frac{z^{n}}{n!}
$$

Theorem. If the strong components of \mathcal{D} are restricted to the family \mathcal{S}, and $S(z, w)$ is its EGF, then the GGF of \mathcal{D} is

$$
\begin{aligned}
\boldsymbol{D}(z, w) & =\frac{1}{e^{-S(z, w)} \odot_{z} \operatorname{Set}(z, w)} \\
\boldsymbol{\operatorname { S e t } (z , w)} & =\sum_{n \geqslant 0} \frac{z^{n}}{n!(1+w)^{\binom{n}{2}}}
\end{aligned}
$$

1. Generating functions.

- $S_{D A G}(z, w)=z$
- $\boldsymbol{D}_{D A G}=\frac{1}{\operatorname{Set}(-z, w)}$
- $S_{\text {elem }}(z, w)=z+\ln \frac{1}{1-z w}-z w$
- $\boldsymbol{D}_{\text {elem }}=\frac{1}{\operatorname{Set}(-z, w)+z \frac{w}{1-w} \frac{d}{d z} \operatorname{Set}(-z, w)}$

2. Product representation.

$$
\operatorname{Set}(z, w)=G\left(z, \frac{-w}{1+w}\right)
$$

- Generating function of graphs:

$$
\begin{aligned}
& G(z, w)=\sum_{n \geqslant 0} \frac{z^{n}}{n!}(1+w)^{\binom{n}{2}} \\
& =e^{U(z w) / w+V(z w)} \sum_{k \geqslant 0} \operatorname{Complex}_{k}(z w) w^{k}
\end{aligned}
$$

- U, T, V and Complex ${ }_{k}$ are EGF of trees, rooted trees, unicycles and components of excess k

Counting directed acyclic and elementary digraphs (by Élie de Panafieu and Sergey Dovgal)

3. The architecture of the complex component in graphs.

- Complex $_{r}(z) \sim e_{r} \frac{T(z)^{5 r}}{(1-T(z))^{3 r}}+\frac{P_{r}(T(z))}{(1-T(z))^{3 r-1}}$,
- $e_{r}=\frac{(6 r)!}{2^{5 r} 3^{2 r}(2 r)!(3 r)!}$
- $E(y):=\sum_{r \geqslant 0} e_{r} y^{r}, \quad e_{r}^{(-1)}=\left[y^{r}\right] \frac{1}{E(-y)}$

4. Two special generating functions.

- $S^{+}(y, \mu):=\sum_{r \geqslant 0} H\left(\frac{3 r}{2}+\frac{1}{4},-\frac{3^{2 / 3}}{2} \mu\right) y^{r}=\sum_{r \geqslant 0} s_{r}^{+}(\mu)$
- $S^{-}(y, \mu):=\sum_{r \geqslant 0} H\left(\frac{3 r}{2}-\frac{1}{4},-\frac{3^{2 / 3}}{2} \mu\right) y^{r}=\sum_{r \geqslant 0} s_{r}^{-}(\mu)$
- $H(r, x):=\frac{2}{3} \sum_{k \geqslant 0} \frac{1}{\Gamma\left(\frac{2 r-2 k+1}{3}\right)} \frac{(-x)^{k}}{k!}$

Theorem.

(a) If $m=\lambda n$, and $\lambda<1$, then a random digraph is acyclic with probability

$$
\mathbb{P}(n, m) \sim e^{\lambda}(1-\lambda)
$$

(b) If $m=n\left(1+\mu n^{-1 / 3}\right)$, and μ stays in a bounded real interval, or $\mu \rightarrow-\infty$, then a random digraph is acyclic with probability

$$
\mathbb{P}(n, m) \sim \sqrt{2 \pi} n^{-1 / 3} \frac{3^{5 / 6}}{2} e^{1-\mu^{3} / 6} \sum_{r \geqslant 0} 3^{-r} e_{r}^{(-1)} s_{r}^{-}(\mu)
$$

Theorem.

(a) If $m=n\left(1+\mu n^{-1 / 3}\right)$, and $\mu \rightarrow-\infty$, then a random digraph is elementary with probability

$$
\mathbb{P}(n, m) \sim 1-\frac{1}{2|\mu|^{3}}
$$

(b) If $m=n\left(1+\mu n^{-1 / 3}\right)$, and μ stays in a bounded real interval, or $\mu \rightarrow-\infty$, then a random digraph is elementary with probability
$\mathbb{P}(n, m) \sim e^{-\mu^{3} / 6} \sqrt{\frac{3 \pi}{2}} \sum_{r \geqslant 0} 3^{-r} s_{r}^{+}(\mu) \cdot\left[y^{r}\right] \frac{1}{y / 2+E(y)+3 y^{2} E^{\prime}(y)}$.

Counting directed acyclic and elementary digraphs (by Élie de Panafieu and Sergey Dovgal)

Exact expressions and analytic tools
5. The exact expressions for directed acyclic and elementary digraphs:

$$
\begin{aligned}
& \#_{D A G}(m, n)=n!^{2} \sum_{t \geqslant 0}\left[z_{0}^{n} z_{1}^{n}\right] \frac{\left(U\left(z_{0}\right)+U\left(z_{1}\right)\right)^{2 n-m+t}}{(2 n-m+t)!} \frac{e^{U\left(z_{1}\right)+V\left(z_{0}\right)}}{e^{V\left(z_{1}\right)}}\left[y^{t}\right] \frac{\sum_{j \geqslant 0} \operatorname{Complex}_{j}\left(z_{0}\right) y^{j}}{\sum_{k \geqslant 0} \operatorname{Complex}_{k}\left(z_{1}\right)\left(-\frac{y}{1+y}\right)^{k} \frac{1}{(1+y)^{n}}} \\
& \# \text { elem }(m, n)=n!^{2} \sum_{t \geqslant 0}\left[z_{0}^{n} z_{1}^{n}\right] \frac{\left(U\left(z_{0}\right)+U\left(z_{1}\right)\right)^{2 n-m+t}}{(2 n-m+t)!} \frac{e^{V\left(z_{0}\right)}}{e^{V\left(z_{1}\right)}\left[y^{t}\right]} \frac{\exp \left(\frac{2 U\left(z_{1}\right)}{1-y}\right)\left(\frac{1-y}{1+y}\right)^{n} \sum_{j \geqslant 0}\left[\operatorname{Complex}_{k}\left(z_{1}\right)\left(1-\frac{1+y}{1-y}\left(T\left(z_{1}\right)-z_{1} \frac{d}{d z_{1}} V\left(z_{1}\right)\right)\right)+\frac{1+y}{1-y} z_{1} \frac{d}{d z_{1}} \operatorname{Complex}_{k}\left(z_{1}\right)\right]\left(-y \frac{1-y}{1+y}\right)^{k}}{l}
\end{aligned}
$$

6. Bivariate semi-large powers lemma.

Lemma. If $n, m \rightarrow \infty$ and $m=n\left(1+\mu n^{-1 / 3}\right)$ and $F\left(z_{0}, z_{1}\right)$ is analytic in $\left\{z_{0}, z_{1} \in \mathbb{C}:\left|z_{0}\right|<1,\left|z_{1}\right|<1\right\}$, then

$$
\left[z_{0}^{n} z_{1}^{n}\right]\left(U\left(z_{0}\right)+U\left(z_{1}\right)\right)^{2 n-m} \frac{F\left(T\left(z_{0}\right), T\left(z_{1}\right)\right)}{\left(1-T\left(z_{0}\right)\right)^{r_{0}}\left(1-T\left(z_{1}\right)\right)^{r_{1}}} \sim \frac{e^{2 n}}{4}\left(\frac{3}{n}\right)^{\left(4-r_{0}-r_{1}\right) / 3} F\left(\frac{m}{n}, \frac{m}{n}\right) H\left(\frac{r_{0}}{2},-\frac{3^{2 / 3}}{2} \mu\right) H\left(\frac{r_{1}}{2},-\frac{3^{2 / 3}}{2} \mu\right)
$$

where

$$
H(r, x):=\frac{2}{3} \sum_{k \geqslant 0} \frac{1}{\Gamma\left(\frac{2 r-2 k+1}{3}\right)} \frac{(-x)^{k}}{k!}
$$

7. Conclusions and Acknowledgements.

- This work was started independently of Naina Ralaivaosaona, Vonjy Rasendrahasina and Stephan Wagner, who are solving the problem of enumeration of DAGs but express their answer in a different form;
- We have since joined our efforts to extend the analysis onto a broader class of digraphs
- We are grateful to Olivier Bodini and Vlady Ravelomanana for fruitful discussions and to the anonymous referees whose suggestions helped to improve the paper
- This work is partly supported by ANR project METACONC.

