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Directed graphs and their generating functions
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an,m := the number of digraphs with n
vertices and m edges from a given family.

1. Generating functions. 2. Product representation.
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U, T,V and Complex, are EGF of
trees, rooted trees, unicycles and
components of excess k
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Main results

3. The architecture of the complex component in graphs. 4. Two special generating functions.
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Theorem. Theorem.
(a) If m= An,and X < 1, then a random digraph is (a) If m= n(1+ pun~"/3), and u — —oo, then a random

acyclic with probability digraph is elementary with probability
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(b) f m=n(1+ ;m_1/3), and p stays in a bounded real
interval, or 4t — —o0, then a random digraph is

acyclic with probability

(b) 1f m = n(14 un~"/?), and p stays in a bounded real
interval, or 4t — —o0, then a random digraph is
elementary with probability
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Exact expressions and analytic tools
5. The exact expressions for directed acyclic and elementary digraphs:
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6. Bivariate semi-large powers lemma.
Lemma. If n,m — oo and m = n(1+ pun~"/3) and F(z, z)) is analytic in {2, z; € C: |z| < 1, |z1| < 1}, then
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