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Directed graphs and their generating functions
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I Directed acyclic graphs: stronly
connected components are vertices

I Elementary digraphs: strongly
connected components are vertices and
cycles

I an,m := the number of digraphs with n
vertices and m edges from a given family.

I Exponential generating function:

A(z,w) :=
∑
n,m

an,mwm z
n

n!

I Graphic generating function:

A(z,w) :=
∑
n,m

an,mwm zn

n!(1 + w)(n2)

I Exponential Hadamard product:
(∑

n>0

an
zn

n!

)
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∑
n>0

anbn
zn
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Theorem. If the strong components of D
are restricted to the family S , and S(z,w) is
its EGF, then the GGF of D is

D(z,w) =
1

e−S(z,w) �z Set(z,w)

Set(z,w) =
∑
n>0

zn

n!(1 + w)(n2)

1. Generating functions.

I SDAG(z,w) = z

I DDAG =
1

Set(−z,w)

I Selem(z,w) = z + ln
1

1− zw
− zw

I Delem =
1

Set(−z,w) + z w
1−w

d
dzSet(−z,w)

2. Product representation.

Set(z,w) = G
(
z,
−w

1 + w

)
I Generating function of graphs:

G(z,w) =
∑
n>0

zn

n!
(1 + w)(n2)

= eU(zw)/w+V(zw)
∑
k>0

Complexk(zw)wk

I U, T ,V and Complexk are EGF of
trees, rooted trees, unicycles and
components of excess k
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3. The architecture of the complex component in graphs.

I Complexr(z) ∼ er
T (z)5r

(1− T (z))3r +
Pr(T (z))

(1− T (z))3r−1 ,

I er =
(6r)!

25r32r(2r)!(3r)!

I E(y) :=
∑

r>0 ery
r , e(−1)

r = [yr ]
1

E(−y)

4. Two special generating functions.

I S+(y, µ) :=
∑

r>0 H( 3r
2 + 1

4 ,−
32/3

2 µ)yr =
∑

r>0 s
+
r (µ)

I S−(y, µ) :=
∑

r>0 H( 3r
2 −

1
4 ,−

32/3

2 µ)yr =
∑

r>0 s
−
r (µ)

I H(r, x) :=
2
3
∑

k>0
1

Γ(
2r−2k+1

3 )

(−x)k

k!

Theorem.

(a) If m = λn, and λ < 1, then a random digraph is
acyclic with probability

P(n,m) ∼ eλ(1− λ)

(b) If m = n(1 + µn−1/3), and µ stays in a bounded real
interval, or µ→ −∞, then a random digraph is
acyclic with probability

P(n,m) ∼
√

2πn−1/3 35/6

2
e1−µ3/6

∑
r>0

3−re(−1)
r s−r (µ)

Theorem.

(a) If m = n(1 + µn−1/3), and µ→ −∞, then a random
digraph is elementary with probability

P(n,m) ∼ 1− 1
2|µ|3

(b) If m = n(1 + µn−1/3), and µ stays in a bounded real
interval, or µ→ −∞, then a random digraph is
elementary with probability

P(n,m) ∼ e−µ
3/6

√
3π
2

∑
r>0

3−rs+
r (µ)·[yr ] 1

y/2 + E(y) + 3y2E ′(y)
.
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5. The exact expressions for directed acyclic and elementary digraphs:

#DAG(m, n) = n!2
∑
t>0

[zn0 z
n
1 ]

(U(z0) + U(z1))2n−m+t

(2n−m + t)!
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[y t ]
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;

#elem(m, n) = n!2
∑
t>0
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6. Bivariate semi-large powers lemma.
Lemma. If n,m→∞ and m = n(1 + µn−1/3) and F (z0, z1) is analytic in {z0, z1 ∈ C : |z0| < 1, |z1| < 1}, then
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n
1 ] (U(z0) + U(z1))2n−m F (T (z0), T (z1))
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∼ e2n
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where

H(r, x) :=
2
3

∑
k>0

1

Γ( 2r−2k+1
3 )

(−x)k

k!

7. Conclusions and Acknowledgements.

I This work was started independently of Naina Ralaivaosaona, Vonjy Rasendrahasina and Stephan Wagner, who are solving the
problem of enumeration of DAGs but express their answer in a di�erent form;

I We have since joined our e�orts to extend the analysis onto a broader class of digraphs
I We are grateful to Olivier Bodini and Vlady Ravelomanana for fruitful discussions and to the anonymous referees whose

suggestions helped to improve the paper
I This work is partly supported by ANR project METACONC.


