Image interdisciplinaire de la Combinatoire Analytique

Interdisciplinary image of Analytic Combinatorics

Sergey Dovgal

Laboratoire d'Informatique de Paris Nord, Université Paris-13

Sous direction de Olivier Bodini et Vlady Ravelomanana Why analytic combinatorics

Outline of the current talk

Part I. Analytic Combinatorics

Level I. Symbolic method

(You can never be too thorough)

Known convolution rules

Combinatorial operations

Operation	interpretation
A(z) + B(z)	disjoint union
A(z)B(z)	cartesian product
$\exp(A(z))$	set
A(B(z))	substitution
$z\partial_z A(z)$	pointing
$A(z) \odot B(z)$	Hadamard product

The philosophy of the symbolic method. (Bergeron, Labelle, Leroux).

Decomposition \Rightarrow

Follow-up: asymptotic analysis. (Flajolet, Odlyzko, ...).

Equation
$$\Rightarrow$$
GF expansion \Rightarrow Asymptotics

Graphic convolution rule

$$A(z) = a_0 + \frac{a_1 z}{1! 2^{\binom{1}{2}}} + \frac{a_2 z^2}{2! 2^{\binom{2}{2}}} + \dots, \quad B(z) = b_0 + \frac{b_1 z}{1! 2^{\binom{1}{2}}} + \frac{b_2 z^2}{2! 2^{\binom{2}{2}}} + \dots$$

coefficient level graphic GF level $c_n := \sum_{k=0}^n \binom{n}{k} a_k b_{n-k} 2^{k(n-k)} \qquad C(z) = A(z) \cdot B(z)$ Graphic convolution rule

$$A(z, w) = a_0 + \frac{a_1(w)z}{1!(1+w)^{\binom{1}{2}}} + \frac{a_2(w)z^2}{2!(1+w)^{\binom{2}{2}}} + \frac{a_3(w)z^3}{3!(1+w)^{\binom{3}{2}}} + \dots$$

coefficient levelgraphic GF level $c_n := \sum_{k=0}^n \binom{n}{k} a_k b_{n-k} 2^{k(n-k)}$ $C(z) = A(z) \cdot B(z)$ $c_n := \sum_{k=0}^n \binom{n}{k} a_k(w) b_{n-k}(w) (1+w)^{k(n-k)}$ C(z,w) = A(z,w)B(z,w)

w marks edges

Enumerative result

[De Panafieu, D. '19]

Exponential Hadamard product:

$$\left(\sum_{n\geq 0} a_n \frac{z^n}{n!}\right) \odot \left(\sum_{n\geq 0} b_n \frac{z^n}{n!}\right) := \sum_{n\geq 0} a_n b_n \frac{z^n}{n!}$$

Exponential GF for graphs, graphic GF for sets:

$$\mathbb{G}(z,w) = \sum_{n\geq 0} (1+w)^{\binom{n}{2}} \frac{z^n}{n!}, \quad \widehat{Set}(z,w) = \sum_{n\geq 0} \frac{1}{(1+w)^{\binom{n}{2}}} \frac{z^n}{n!},$$

Theorem. (Rediscovery of results by Liskovets and Robinson)

digraphsgraphsEGF, connected
$$-\log\left(\mathbb{G}(z,w)\odot\frac{1}{\mathbb{G}(z,w)}\right)$$
 $-\log\left(\frac{1}{\mathbb{G}(z,w)}\right)$ components from
given family \mathcal{C} $GGF = \frac{1}{\widehat{Set}(z,w)\odot e^{-C(z,w)}}$ $EGF = \frac{1}{e^{-C(z,w)}}$

Level II. Systems of algebraic equations

Lambda terms

A tree-like representation of a *closed* lambda term $\lambda x.\lambda y.\lambda z.(xz)(yz)$

Drmota-Lalley-Woods theorem (simplified)

Theorem.

• Let F(z) be a generating function satisfying

$$F(z) = \Phi(F(z), z)$$

with Φ is nonlinear, strongly-connected and has "combinatorial origin"

• Then, there exists $\rho > 0$ such that as $z \to \rho$, $z \in \mathbb{C}$

$$F(z) \sim a - b \sqrt{1 - \frac{z}{
ho}}$$

Drmota-Lalley-Woods theorem in infinite dimension

$$F(z,\vec{u}) = \Phi(F(z,\vec{u}),z,\vec{u})$$

Theorem. [Drmota, Gittenberger, Morgenbesser '2012] simplified Let dim $\Phi = \infty$. If the Jacobian $\frac{d\Phi}{dF}$ can be represented as $\alpha \cdot \mathbb{I} + \varepsilon$, where ε is a compact operator, then DLW expansion holds:

$$F(z) \sim a(\vec{u}) - b(\vec{u})\sqrt{1 - \frac{z}{\rho(\vec{u})}}$$

Theorem. [Bendkowski, Bodini, D. '2019] simplified If Φ is ∞ -dimensional *forward-recursive* then DLW expansion holds.

Formulation of our result

[Bendkowski, Bodini, D.]

Definition. (Forward recursive systems)

$$\vec{L}_m = \vec{K}_m(\vec{L}_m, \vec{L}_{m+1}, z, \vec{u}), \quad m = 0, 1, 2, \ldots, \infty.$$

satisfies the conditions

- $\blacktriangleright \vec{K}_m(\vec{\ell}_1,\vec{\ell}_2,z,\vec{u}) \succeq \vec{K}_\infty(\vec{\ell}_1,\vec{\ell}_2,z,\vec{u})$
- \vec{K}_{∞} is DLW-well-defined

$$\blacktriangleright \vec{K}_{\infty}(\vec{L}_{\infty},\vec{L}_{\infty},z,\vec{u}) - \vec{K}_{m}(\vec{L}_{\infty},\vec{L}_{\infty},z,\vec{u}) \preceq \vec{A}(z,\vec{u}) \cdot \underbrace{B(z,\vec{u})^{m}}_{<1 \text{ at } z=\rho, \ \vec{u}=\vec{1}};$$

Theorem. (Coefficient transfer)

$$egin{aligned} & [z^n]ec{\mathcal{L}}_m(z,ec{u})\sim [z^n]\sum_{k\geq 0}ec{c}_{m,k}\left(1-rac{z}{
ho(ec{u})}
ight)^{k/2} \ & \|ec{c}_{m,k}-ec{c}_{\infty,k}\|\sim C^{-m} \end{aligned}$$

Illustration of a forward-recursive system

Example. *Closed* lambda terms.

$$\begin{split} L_0(z) &= z L_1(z) + z L_0(z)^2 , \\ L_1(z) &= z L_2(z) + z L_1(z)^2 + z , \\ L_2(z) &= z L_3(z) + z L_2(z)^2 + z + z^2 , \\ & \dots \end{split}$$

$$L_{\infty}(z) = zL_{\infty}(z) + zL_{\infty}(z)^2 + rac{z}{1-z}$$
.

Conditions to check.

$$z\lambda_1 + z\lambda_2^2 + z + z^2 + \ldots + z^m \leq z\lambda_1 + z\lambda_2^2 + \frac{z}{1-z}$$

$$\blacktriangleright z^{m+1} + \ldots \preceq \alpha(z) \cdot \beta(z)^m$$

•
$$L_{\infty}(z)$$
 satisfies DLW conditions

Generalisation. Decorate with marking variables.

Multiparametric sampling

Context-free grammar with terminals \bullet_1 , \bullet_2 , \bullet_3 , \bullet_4 and non-terminals S_1 , ..., S_n :

$$S_i \rightarrow \sum_j T_{ij}(S_1,\ldots,S_n,\bullet_1,\bullet_2,\bullet_3,\bullet_4)$$

Exact sampling. Given positive integers $(n_1, n_2, ..., n_d)$, sample *uniformly at random* a word $w \in S_1$ such that

$$|w|_{\bullet_1} = n_1, \quad |w|_{\bullet_2} = n_2, \quad \cdots, \quad |w|_{\bullet_d} = n_d$$

:(This problem is #P-complete):

Boltzmann sampling. Given positive reals $(z_1, z_2, ..., z_d)$, sample a word $w \in S_1$ so that

$$\mathbb{P}(\mathbf{w}: |\mathbf{w}|_{\bullet_1} = n_1, |\mathbf{w}|_{\bullet_2} = n_2, \cdots, |\mathbf{w}|_{\bullet_d} = n_d) = \frac{z_1^{n_1} z_2^{n_2} \cdots z_d^{n_d}}{\sum_{n_1, \dots, n_d} z_1^{n_1} z_2^{n_2} \cdots z_d^{n_d}}$$

(: There exists a polynomial algorithm :)

Boltzmann sampler

$$S_i \rightarrow \sum_j T_{ij}(S_1,\ldots,S_n,ullet)$$

Algorithm 1: Boltzmann sampler for context-free grammars

Data: real value z > 0**Result:** Random word from Boltzmann distribution **Function** $\Gamma R_i(z)$: if R_i is terminal then return •; for all j do $p_j := \frac{T_{ij}(S_1(z),\ldots,S_n(z),z)}{R_i(z)};$ Choose the transition T_{ii} with probability p_i ; $A_1A_2...A_k := T_{ij};$ return $\Gamma A_1(z)\Gamma A_2(z)\cdots\Gamma A_k(z);$

Multiparametric Boltzmann sampler

$$S_i \rightarrow \sum_j T_{ij}(S_1,\ldots,S_n,\bullet_1,\bullet_2,\cdots,\bullet_\ell)$$

Algorithm 2: Boltzmann sampler for context-free grammars

Data: real values $z_1, z_2, \cdots, z_{\ell} > 0$ **Result:** Random word from Boltzmann distribution **Function** $\Gamma R_i(z)$: if R_i is terminal \bullet_k then return \bullet_k ; for all *j* do $p_j := \frac{T_{ij}(S_1(\mathbf{z}), \ldots, S_n(\mathbf{z}), \mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_\ell)}{R_i(\mathbf{z})};$ Choose the transition T_{ii} with probability p_i ; $A_1 A_2 \dots A_k := T_{ij};$ return $\Gamma A_1(\mathbf{z}) \Gamma A_2(\mathbf{z}) \dots \Gamma A_k(\mathbf{z});$

Tuning of the multiparametric Boltzmann samplerHandles z \Rightarrow Expectations $\mathbb{E}n_k$

" The handles cannot be tuned independently " Tuning equation:

$$z_1\frac{\partial_{z_1}F(\vec{z})}{F(\vec{z})} = \mathbb{E}n_1, \quad z_2\frac{\partial_{z_2}F(\vec{z})}{F(\vec{z})} = \mathbb{E}n_2, \quad \dots, \quad z_\ell\frac{\partial_{z_\ell}F(\vec{z})}{F(\vec{z})} = \mathbb{E}n_\ell$$

Tuning of the multiparametric Boltzmann sampler

Theorem. Let the expected values n_1, \ldots, n_ℓ of the terminals $\bullet_1, \bullet_2, \cdots, \bullet_\ell$ be given. Let $S_k(\mathbf{z})$ satisfy

$$S_1 = \Phi_1(S_1, \dots, S_n, \mathbf{z}),$$

...
$$S_n = \Phi_n(S_1, \dots, S_n, \mathbf{z}).$$

The tuning vector $(z_1, \ldots, z_\ell) = (e^{x_1}, \ldots, e^{x_\ell})$ can be obtained by solving a convex optimisation problem

$$S_{1} - n_{1}x_{1} - n_{2}x_{2} - \dots - n_{\ell}x_{\ell} \to \min_{(S_{1}, \dots, S_{n}, x_{1}, \dots, x_{\ell})},$$

$$S_{1} \ge \log \Phi_{1}(e^{S_{1}}, \dots, e^{S_{n}}, e^{x_{1}}, \dots, e^{x_{\ell}}),$$

$$\dots$$

$$S_{n} \ge \log \Phi_{n}(e^{S_{1}}, \dots, e^{S_{n}}, e^{x_{1}}, \dots, e^{x_{\ell}}).$$

Level III. Airy function and saddle point

Boltzmann tuning as saddle point equation

$$\left(\mathbb{P}_x(N=k)=\frac{x^k[z^k]f(z)}{f(x)}\right)$$

Coalescence of saddle points

Gaussian case.

$$[z^{n}]f(z) = \frac{1}{2\pi i} \oint_{|z|=R} e^{g(z)} \frac{dz}{z} \approx \frac{1}{2\pi i} \oint_{|z|=R} e^{g(z_{0}) + \frac{1}{2}g''(z_{0})(z-z_{0})} \frac{dz}{z}$$
$$\approx \frac{1}{\sqrt{2\pi g''(z_{0})}} e^{g(z_{0})}$$

Coalescence of saddle points. When g'(z) = g''(z) = 0,

$$g(z) \approx g(z_0) + \frac{1}{6}g'''(z_0)(z-z_0)^3$$

Airy function.

$$A(y) = \int_{\mathbb{R}} e^{i(x^3/3 - xy)} dx, \quad A''(y) + yA(y) = 0$$

FJKLP lemma for graphs

 $[Flajolet, Janson, Knuth, Luczak, Pittel] \rightarrow Airy function is hidden inside$

Point of saddle coalescence. Graphs with *n* vertices, *m* edges, $m = \frac{n}{2}(1 - \mu n^{-1/3}), \mu \to \infty$:

$$\frac{n!}{|\mathcal{G}_{n,m,\Delta}|} \frac{1}{2\pi i} \oint \frac{U(z)^{n-m}}{(n-m)!} e^{V(z)} \frac{dz}{z^{n+1}} = 1 - \frac{5}{24|\mu|^3} + O(\mu^{-6})$$

$$\stackrel{\uparrow}{\underset{\text{graphs consist of trees}}{\stackrel{\uparrow}{\underset{\text{trees}}}} \int \frac{U(z)^{n-m}}{(n-m)!} e^{V(z)} \frac{dz}{z^{n+1}} = 1 - \frac{5}{24|\mu|^3} + O(\mu^{-6})$$

Refined analysis.

$$\frac{n!}{\mathcal{G}_{n,m,\Delta}|} \frac{1}{2\pi i} \oint \frac{U(z)^{n-m}}{(n-m)!} e^{V(z)} \stackrel{C}{\underset{\text{unicycles}}{\uparrow}} \frac{c}{(1-T(z))^{3\gamma}} \frac{dz}{z^{n+1}} \sim \frac{c}{|\mu|^{3\gamma}}$$

Graphs with degree constraints

[De Panafieu, Ramos], [D., Ravelomanana]

Allowed degrees: $\Delta = \{\delta_1, \delta_2, \delta_3, \delta_4, \delta_5, \ldots\}, \quad \delta_1 = 1 \text{ or } \delta_2 = 1.$

EGF of allowed degrees helps to construct the trees and unicycles, next higher excess

$$\omega(z) = \sum_{d \in \Delta} \frac{z^d}{d!} \quad \Rightarrow \quad T(z) = z\omega'(T(z)), \quad U(z) = z\omega(T) - \frac{T(z)^2}{2}$$

Point of saddle coalescence. Graphs with *n* vertices, *m* edges, $m = \alpha n(1 - \mu n^{-1/3}), \mu \rightarrow \infty$,

$$\widehat{z} \frac{\omega''(\widehat{z})}{\omega'(\widehat{z})} = 1, \quad \widehat{z} \frac{\omega'(\widehat{z})}{\omega(\widehat{z})} = 2\alpha.$$

2-SAT contradictory component [[[Kim '2008], [D. '2019+]

Point of saddle coalescence. 2-CNF with *n* variables, *m* clauses, $m = n(1 - \mu n^{-1/3}), \mu \rightarrow \infty$:

$$\mathbb{P}\left(\textit{F}_{n,m} ext{ is satisfiable}
ight) \sim 1 - rac{1}{16|\mu|^3}$$

Theorem. [D. '2019] Cubic contradictory cores of excess *r* appear with probability $\Theta(|\mu|^{-3r})$.

Open question. [De Panafieu, D., Ravelomanana '2019] Digraphs with *n* vertices, *m* oriented edges, $m = n(1 - \mu n^{-1/3})$, $\mu \rightarrow \infty$:

$$\mathbb{P}\left(egin{array}{c} ext{every strong component is} \ ext{an isolated vertex or a cycle}
ight) \sim 1 - rac{C}{|\mu|^3}, \quad C=?$$

Part II. Interdisciplinary image

Lambda terms

A tree-like representation of a *closed* lambda term $\lambda x.\lambda y.\lambda z.(xz)(yz)$

Lambda terms

Church–Turing thesis

Curry–Howard correspondence

Michal Pałka's thesis

THESIS FOR THE DEGREE OF LICENTIATE OF PHILOSOPHY

Testing an Optimising Compiler by Generating Random Lambda Terms

MICHAŁ H. PAŁKA

CHALMERS | GÖTEBORG UNIVERSITY

Department of Computer Science and Engineering Chalmers University of Technology and Göteborg University Göteborg, Sweden 2012

- CSmith ['2011]: generation of random C programs, 325 previously unreported bugs in GCC, LLVM, other C compilers and CompCert (with a formally verified core)
- Michal Pałka et al. ['2012]: Eight failures and four bugs detected, reported and fixed (GHC optimising compiler)

Statistical properties of closed lambda terms [[Bendkowski, Bodini, D. '2019]

Denometer	Mean, \sim		Distrib	ution
Parameter	plain	closed	plain	closed
Variables	0.307n		Normal	
Abstractions	0.258n		Normal	
Successors	0.129n		Normal	
Redexes	0.091n		Normal	
Index value	0.420		Geometric	
Redex search time	6.222	6.054	Discrete	Discrete
Head abstractions	0.420	1.447	Geometric	Discrete
<i>m</i> -openness	2.019	0	Discrete	trivial
Free variables	5.722	0	Discrete	trivial
Unary height profile	$0.122\sqrt{n}$		Rayle	eigh
Natural height profile	0.41	$2\sqrt{n}$	Rayle	eigh

Random generation of closed lambda terms [[Bendkowski, Bodini, D. '2019]

Theorem. Polynomial algorithm for tuning with given

- number of atomic nodes of distinguished colors
- number of redexes (i.e. patterns necessary to perform a computation step in lambda calculus)
- number of head abstractions
- number of closed subterms
- number of any tree-like patterns

Having corner cases instead of uniform distribution is necessary.

Multiparametric Tuner Implementation

[Bendkowski, Bodini, D.]


```
>>> from paganini import *
>>> spec = Specification()
>>> z, u, M = Variable(1000), Variable(200), Variable()
>>> spec.add(M, z + u * z * M + z * M ** 2)
>>> spec.run_tuner(M)
```

Level II. Data sciences

Definition. A *network* is a graph or directed graph, formed by *real-world data*.

Differences exhibited (networks versus Erdős-Rényi graphs)

- Density
- Degree distribution
- Diameter, shortest path
- Connectivity, clustering
- Spectral properties
- other metrics

Degree constraints approach

[De Panafieu, Ramos], [D., Ravelomanana]

Set of degree constraints

$$\Delta = \{\delta_1, \delta_2, \delta_3, \delta_4, \delta_5, \ldots\} \quad \Rightarrow \quad \omega(z) = \sum_{d \in \Delta} \frac{z^d}{d!}$$

- Erdős-Rényi graphs: Poisson degree distribution
- Scale-free network: $\mathbb{P}(k) \sim k^{-\gamma}$

Theorem. [D., Ravelomanana] Phase transition is shifted with "weighted" allowed degrees

$$\omega(z) = \sum_{d \in \Delta} c_d z^d$$

Open question. Can we mimic the behaviour of scale-free network using a weighted EGF for set degree constraints?

Bianconi-Barabási approach

Bose-Einstein condensation in evolving networks

Bose gas	network evolution
diluted gas at low temperature	evolving network
temperature	temperature
energy	energy
particle	half-edge
number of energy levels	\leqslant number of nodes
Bose-Einstein condensation	topological phase transition

In this model, the number of particles on the energy level ε follows the Bose statistics $n(\varepsilon) = \frac{1}{e^{\beta(\varepsilon-\mu)}-1}$ which also represents the number of edges linking to nodes with energy ε .

Weighted partitions as BEC in quantum harmonic oscillator

[Vershik], [Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]

Coloured partitions \leftrightarrow d-dimensional quantum oscillator

Weighted partition	Random particle assembly
Sum of numbers	Total energy
Number of colours	Dimension (<i>d</i>)
Row of Young table	Particle
Number of rows	Number of particles
Number of squares in the row	Energy of a particle (λ)
Partition limit shape	Bose-Einstein condensation
$\binom{d+\lambda-1}{\lambda}$	Number of particle states

Theorem. There exists a polynomial algorithm to generate random assemblies with given numbers of colours $(n_1, n_2, ..., n_d)$.

Combinatorial learning []]]

Maximum likelihood approach. Data X_1, \ldots, X_n is i.i.d, and follows \mathbb{P}_{θ} .

- Parameter estimation: find θ
- Hypothesis testing
- Nonlinear regression: $y = f(x) + \varepsilon$
- Model selection, etc

Combinatorial learning. Data X_1, \ldots, X_n are (projections of) parameters of combinatorial objects generated from Boltzmann distribution \mathbb{P}_z .

- Object size
- Number of leaves in a tree, height, etc
- Patterns in context-free grammars
- Basically, whatever is markable

Combinatorial learning []. '2020+]

Hidden parameter estimation. (Case study) Objects are sampled from $\mathbb{P}_{z,u}$. We observe only the size parameter corresponding to *z*. Estimate (z, u).

Lemma. In case of general dimension, this problem is #P-complete.

Proposition. Boltzmann relaxation has a polynomial solution, using the tuning algorithm from [Bendkowski, Bodini, D.]

Level III. Mathematical physics

Connections with mathematical physics

2-SAT phase transition in terms of Ising model

Maps, ribbon graphs and models of 2-d quantum gravity

Weighted partitions and Bose-Einstein condensate

Parameters in random maps regardless of genus [Bodini, Courtiel, D., Hwang]

Statistics	Differential equation	Mean	Limit law
leaves	$egin{array}{ll} L = v + (2-u)zL + zL^2 \ + 2z^2\partial_zL + z(1-v)\partial_vL \end{array}$	1	Poisson(1)
root is thmic parts	$C=1{+}zC{+}vzC _{v=1}C{+}2z^2\partial_zC$	2	$\operatorname{Geometric}(\frac{1}{2})$
vertices	$X=v+zX+zX^2+2z^2\partial_z X$	$\log n$	$\mathcal{N}(\log n, \log n)$
loops	$Y=v+vzY+vzY _{v=1}Y\ +2vz^2\partial_zY+v^2z(vw-1)\partial_vY$	$\frac{1}{2}n$	A new law*
root edges	$\begin{array}{l} E=1+vzE+vzE _{v=1}E\\ +2vz^2\partial_zE \end{array}$	$\frac{2}{3}n$	$\text{Beta}(1, \frac{1}{2})$
root degree	$D = 1 + v^2 z D + v z D _{v=1} D + 2v z^2 \partial_z D - v^2 (1-v) z \partial_v D$	n	Uniform[0,2]

Part III. Summary

Crossroad of tools and applications

	λ -calculus	networks	mathematical statistics	other
$F = \Phi(F, z)$	closed λ -terms			
$z\frac{F'(z)}{F(z)} = n$	software testing	Bianconi– Barabasi	combinatorial learning	tilings, RNA, queues
$P(F,F_x',F_y')=0$	λ linear λ -terms			random maps
$\int_{\mathbb{R}} e^{-ix^3 - ixy} dx$	x height profile	graphs with degree constraints	N	2-SAT Vitten's conjecture

Preprints and publications

Paper		Tools
	Shifting the phase transition threshold for random graphs using degree constraints	Combinatorial decomposition + saddle point
	The birth of the contra- dictory component in random 2-SAT	Inclusion-exclusion + saddle point
	Symbolic method and directed graph enumeration	Combinatorial decomposition + Inclusion-exclusion
	Statistical properties of lambda terms	Infinite-dimensional Drmota-Lalley- Woods Theorem
map = 1 or of a c	Asymptotic distribu- tion of parameters in random maps	Disconnecting transform + linearisa- tion of PDE
	Polynomial tuning of multiparametric com- binatorial samplers	Convex optimisation

Preprints and publications

Paper		Tools
	Shifting the phase transition threshold for random graphs using degree constraints	Combinatorial decomposition + saddle point
	The birth of the contra- dictory component in random 2-SAT	Inclusion-exclusion + saddle point
	Symbolic method and directed graph enumeration	Combinatorial decomposition + Inclusion-exclusion
) Statistical properties of lambda terms	Infinite-dimensional Drmota-Lalley- Woods Theorem
map = i or of i or i i	Asymptotic distribu- tion of parameters in random maps	Disconnecting transform + linearisa- tion of PDE
	Polynomial tuning of multiparametric com- binatorial samplers	Convex optimisation
Peer-reviewed conference proceedings: 4 papers		

Accepted to a peer-reviewed journal: 1 paper ([70 pages, E-JC])

Preprints and publications

Paper		Tools
	Shifting the phase transition threshold for random graphs using degree constraints	Combinatorial decomposition + saddle point
	The birth of the contra- dictory component in random 2-SAT	Inclusion-exclusion + saddle point
	Symbolic method and directed graph enumeration	Combinatorial decomposition + Inclusion-exclusion
$\mathcal{L}_{\infty} = \underbrace{\begin{array}{c} 0 \\ \mathcal{L}_{\infty} \end{array}}_{\mathcal{L}_{\infty}} + \underbrace{\begin{array}{c} 0 \\ \mathcal{L}_{\infty} \end{array}}_{\mathcal{L}_{\infty}} + \underbrace{\begin{array}{c} 0 \\ \mathcal{L}_{\infty} \end{array}}_{\mathcal{L}_{\infty}} + \underbrace{\begin{array}{c} 0 \\ \mathcal{L}_{\infty} \end{array}}_{\mathcal{L}_{\infty}}$	Statistical properties of lambda terms	Infinite-dimensional Drmota-Lalley- Woods Theorem
map-i or of i i	Asymptotic distribu- tion of parameters in random maps	Disconnecting transform + linearisa- tion of PDE
	Polynomial tuning of multiparametric com- binatorial samplers	Convex optimisation

Thank you.