Multiparametric Boltzmann sampling;:
on the crossroad of probability
and convex optimisation

Maciej Bendkowski ® Sergey Dovgal Olivier Bodini ®

2Jagellonian University, Krakow

bLIPN, Université Sorbonne Paris Nord

SPOC Seminar, 13/10/2021

I, COFINANGE REGION
* * PAR L'UNION BOURGOGNE
R EUROPEENNE FRANCHE

COMTE

Plan

o Nk =

Introduction to random sampling
Unambiguous context-free grammars
Exact multiparametric sampling is NP-hard
Boltzmann sampling

Tuning a Boltzmann sampler

Convex optimisation complexity
Implementation

Applications and examples

Introduction

Random sampling

Problem
Let @ € RY Py be a given probability distribution on strings*.

Sample X ~ Py

x All discrete objects can be encoded by strings!

Some examples

Uniform sampling of rooted trees with 4 vertices

Uncontrolled sampling: X ~ P(X)

{M y (1 A

Controlled (parametric) sampling:
X ~ P(X | number of leaves = 2)

{ A0

Some more examples

Closed lambda terms

®
& @
FO ®w
I® O 0@
o) o)
0] ®
® ®
@ o} ® @
@ FQo
® ® ® ®» Je
go @ ®Q oJONNO!
® @ FOD & ®@ Q
GO 6O FOQ ® & » @
O OP Qe ® v ® @&
® ® Qe ® o] ®@
O F@ P © doow
® ®» & o}
® o #Q
® FQO
®® JQew
@ ® [oRo¥ORO]
foXo} o} oY Fo¥O)
® ® @ ©
Joow @®O
® @ ®
oo
O®
®

Some more examples

RNA with given secondary structure energies

o s w0 w0 M o

Frequency

o s w0 w0

r

7/73

Some examples

Trees with nnodes {{eo}{0}{0}}
Graphs, networks (with given parametric properties)

Tilings (with given number of tiles of each color)

>

>

>

> RNA sequences (with given pairing frequencies)

» lambda terms (with given proportion of beta-redexes)
>

...music with a given amount of sadness...

Why random sampling?

Motivations for random sampling

» Art and entertainment
» T-shirt printing
» Paintings, decorations, tilings
» Music composition
> Artificial intelligence artwork
» Monte-Carlo simulations
> Property-based software testing (QuickCHECK, lambda terms)
> Biology (cell dynamics, RNA structures)
> Statistical physics (random maps, Bose-Einstein condensate,
Ising model, tilings, plane partitions)
» Theoretical computer science
» Random permutations, sorting algorithms, cellular automata
» Random graphs and community detection
» Crypto primitives and low-level programming
Concurrent process analysis, queueing systems

>
» Automata sampling

Unambiguous context-free grammars

Unambiguous context-free grammars

Example
Binary trees

{'7 A, K\r /X>?

{o, o(e)(), o(e(e)(e))(e), o(e)(e(e)(e)), -}

[T=e|o(T)(T)]

Weighted unambiguous context-free grammars

Example

Trees with < 4 children
{" INEAVE FROTY YRR —}

{(e); (o(2)), (o(e)(®)), (e(e(e))), (e(e)(®)(e)). .-}

Weighted grammar

| T=(20)[(+17) [(o2TT)| (ssTTT) | (e4TTTT)]

Color of the node reflects how many children it has.

Controlled sampling with rooted trees

Example

| T=(00)[(+17) [(2TT) | (s5TTT) | (eTTTT)]

Randomly sample rooted trees with N nodes
Quantity of e; nodes is nq

Quantity of e, nodes is n,

Quantity of e3 nodes is n3

Quantity of e4 nodes is n3
nm+nm+n+n <N

vVvyvyVvVvYyypy

Exact multiparametric sampling

Let S; be defined by an unambiguous context-free grammar (CFG)

Si — Tij(sh s 75n7.17.27.37 . '7.0')
J
where (Tjj);j are transitions, and (e, @5, ®3,...,®,4) are alphabet
letters.
Problem
Given positive integers (n, n, ..., ng), sample a word w with ny

literals of color k from a context-free grammar uniformly at random;

Complexity
Exact multiparametric sampling from CFG is NP-hard

Exact sampling is NP-hard: reduction from #2-SAT

» [Jerrum, Valiant, Vazirani ’86] If there is a fully polynomial
almost uniform generator for R, then there is a fully polynomial
randomized approximation scheme (FPRAS) for Ng.

» [Welsh, Gale 2001] Unless NP = RP, there is no FPRAS for
#2-SAT

» [Bendkowski, Bodini, D. ’2020] #2-SAT can be reduced to
counting the number of words in unambiguous context-free
grammars

= exact sampling cannot be approximated unless NP = RP

Exact sampling is NP-hard: reduction from #2-SAT
[Welsh, Gale *2001] + [Jerrum, Valiant, Vazirani ’86] + [Bendkowski, Bodini, D. ’2020]

Example. Consider a 2-CNF formula

F= I(x1 Y Y2)“(x1 Y ?4)"(}2 v ?3)"(}2 \Y% Y4)“(Y3 \Y x4)l
(&} (] 3 Ca C5

Step 1.

Consider a grammar with an initial state A:

> A= (X1 +X1)...(Xa + Xq)

> Xy =cc, Xi=1, X=1, Xy=ciccs,- -
Then, #2SAT(F) = #{w < A||w|, > 1,...,|w|, > 1}

reduction from #2-SAT (continuation)

F= I(x1 V Yz)“(x1 v m)ﬂ(y2 Y ?3)"(}2 \% Y4)“(Y3 \% x4)l
(&} (] C3 Ca C5

> A= (X1 +X1)...(Xs + X4)
> X1:C1C2, Y]ZL X2:1, Y2:C1C3C4,"'
H2SAT(F) = #{w « A’ Wle, = 1,0, |wle = 1)

Step 2.

> B:A(1+C1)(1+C5)
H2SAT(F) = #{w « B‘ Wle, = 2, |Wle = 2}

What does it all mean?

Weighted unambiguous context-free grammars can encode a lot of
things...

We can take that to our advantage!

But we cannot sample efficiently — very hard! What to do?

Boltzmann sampling

Generating functions and the symbolic method

Framework
» Discrete objects are represented by words in a finite alphabet.
P The size of the object is the number of its letters.
P Let a, be the number of words of length n

Generating function of the counting sequence:

[e.o]

A(z) = Z an,z"

n=0

EF N WA U O N o®
L]

12 3 4 5 6 7 8

Boltzmann distribution

Probability output of the Boltzmann samplers

Let S(z) be the generating function of the language S:

S(z) = Z anz"
n=0
Consider a distribution P, on words w € S:
» conditioned on word length |w| = n, the distribution is uniform

> length distribution follows Gibbs law

anz"

PZ(‘W’ = n) = S(Z)

> expected word length:

Example: lambda terms in de Bruijn notation

Ax Ay z.(xz)(yz) — AAA(20)(10)

Classical notation —— de Bruijn notation

Example: lambda terms in de Bruijn notation

z

L:=A|(LL)|n L(z) = zL(z) + zL(2)* +

1—2z

n
n:=0]|Sn. Thn="T, 1+ Z TeTh—k—1+1
k=1

/- + @

@ =0 -

Boltzmann sampling

Algorithm 1: Boltzmann sampler for plain lambda terms

Input: Integer number n

Output: Random term of variable size, target expected size n
begin

Precompute z as a function of n// stay tuned

Function Generate(z):

Carefully look at the equation

U(z) = 2L(2) + 2L(2 + Z .

Flip a weighted coin X € {\, @, n} with weights

P, — zL(z)7 Po = sz(z)’ P, — i
L(z) L(z) S L)
if X = \then
| return A Generate (n— 1) // abstraction ;
if X = 0@ then

L:=Generate(z) ;
R :=Generate(z) ;
| return (LR) // application ;
if X = nthen
return Geom(z) // de Bruijn index ;

Multivariate generating functions

Consider a language S C X* where X = { o4, o3, 03, 04} is finite.
Let an, n,,ns,n, count the number of words w € S containing

> ny letters o,

> n, letters o,

> s letters o3,

> n, letters oy
Its multivariate generating function is

S(ZT y 225 Z3, 24) = Z am,nz,ﬂs,mziﬁ Z;ZZ?ZAM .
n=0
Boltzmann distribution
nm _ny_n3_ng

Any,m 3,21 29 23 24
S(Zh 7, 73, Z4)

]P)(nhnZa ns, ng | Z],Zz,Z3,Z4) -

Example: lambda terms and their parameters

Abstractions, variables, successors and redexes marked separately:

L(z,) = uaps)zL(z, U) + N(z, 1)
U(var)Z

N(Z7 E) - 1— U(suc)Z

+ U(red) U(abs) 2 L(z, 1)* + zN(z, 1) L(z, 1).

¢
1
1

\

A-
A

Multiparametric Boltzmann sampling

Plain lambda terms with given portions of abstractions, variables, successors and redexes

L(27 ﬁ) = u(abs)ZL(Zz ﬁ) + N(27 Fj)

u var z — — —
N(z,d) = % + Ufred) U(abs)Z L(z, §)* + zN(z, B) L(z,).

Algorithm 2: Boltzmann sampler for plain lambda

terms
Input: Target expectations N, n(aps), N(var)s N(suc)» N(red) Function
Output: Random term with target expected size N, and N .
; ted ! (2, U(abs)s U(var) s U(suc)s U(red)) *
given expected parameters Generate X € {0, 1,2} such that
begin
Precompute (z, U(abs)> U(var)s U(suc)» U(,ed)) as]f(;“')zz
functions of (N, N(abs), A(var) A(suc)> N(red)) P(X =0) = N(z(mi)i) ,
// stay tuned; ’ 5 o
Function I'L(Z, U(aps), U(var)> Y(suc), U(red)) * P(X=1)= u(red)u(abs)zﬂl-(za i) 7
Generate X € {0, 1} such that N(z, 1)
zN(z, U)L(z,)
L(z,d P(X=2)= —————
B(x = o) = Ut N
L(z, d)
P(X = 1) = N(z, @) X =0 = return Geom(zu(y));
0 Uz0) X =1 = return (\[L(z, 0))T L(z, @);
| X =1 = return (TN(z,8)l'L(z,));

X =0 = return A['L(z, 4);
| X=1 = returnN(z, i);

Tuning a Boltzmann sampler as convex optimisation

Mathematical formulation

— m_n; _n3 ng
5(215227 Z35 e 7Zd) - Any,n,n3,...,nq %1 22 23 "1 2y
n=0
o 6215(217227237"-7Zd) o
EZI,Zz,Z3,...,Zd(£1) - Z1 - N17
S(z1,22, 235+ -y 24)
8Zd5(z17227z37"'72d) _

E =
21722,Z3~~~7Zd(§d) Zd 5(21722, Z . Zd)

Tuning of a multiparametric Boltzmann sampler

= ’ Expectations Eny ‘

! The handles cannot be turned independently !

Convex optimisation formulation

Universal version

Let z; = €. Tuning is equivalent to convex optimisation problem

w— NTC — min¢ o,
p > log S(e)

Idea. log Y €' is a convex function.

V¢ (Iog S(eS) — NTC) =0

if and only if
8215(21,22723,...,Zd) — N
— N1,
5(Z1,ZQ,23,...,Zd)
Zdazds(zhz2723>"'7zd) _ Nd-

S(Zh 79y Z3y .o 7Zd)

Case study: unambiguous context-free grammars

Let C = ®(C, 2) be a multi-parametric CFG:
» C=(Cy,...,Cn), sampling from the state C;

> &= (dq,...,d,) is a transition matrix
> Z = (2,...,24) are distinct terminals
» N =(Ni,...,Ny)is a tuning vector

Let z = €f. The solution comes from the convex problem:

G — NTC — ming ¢,
c > log (e, e)

Convex optimisation complexity

Interior point method

Convex optimisation programs

{cTz — min,

filz) <o0fori=1,...,m
Nesterov and Nemirovskii IPM:

O (ﬁlog <@>) Newton iterations,
3

where
» v is the self-concordance parameter
P L is related to the choice of the starting point

> ¢ is the target precision (in the solution space)

Self-concordant functions

Just if you are curious to see the most used criterion

If f(x) is a three times continuously differentiable real-valued
convex function such that

001 < 38x71f"(x), x>0
for some 8 > 0, then
F(t,x) = —log(t — f(x)) — max[1, 3%] log x
is a self-concordant barrier with v = 1+ max[1, 3%].

» Positive linear combinations are also self-concordant
with v =) au;

Barriers for combinatorial constructions

» Context-free unambiguous: v = O(# of terms)

» Other constructions: cycles, sets, restricted cycles and sets

P> More constructions: unlabelled cycles, multisets, ...

Implementation

Boltzmann Brain + Paganini

Grammar example: Motzkin trees with non-uniform weights

M(z) = z + uz*M(z) + 22M?*(2)

-- Motzkin trees
MotzkinTree = Leaf
| Unary MotzkinTree (2) [@.3]
| Binary MotzkinTree MotzkinTree (2).

Tiling example, practical benchmark

hll ol B [5 (57 B ol o L

Tilings 9 x n form a regular grammar with
» 1022 tuning parameters
> 19k states
» 357k transitions

We tune for a uniform distribution for tile frequency.
This results in few hours of tuning.

Tiling example, practical benchmark

Applications and examples

A

Combinatorial learning

Software testing using lambda calculus

Models of random trees

RNA folding design

Bose—-Einstein condensate in quantum harmonic oscillator

Permutation classes

Application 1: Combinatorial learning

Application 1: Combinatorial learning

Example: hidden parameter estimation

Maximum likelihood estimate for Boltzmann distribution.

an, 2"

F(2)

n
L(X1,..., Xalz) = logP(|Xi| = n| z) = log
i=1

= Zlogan, —i—Zn,Iogz— nlog F(z) — max

We obtain the tuning equation:

Y F(2)

n F(2)

» Hidden parameter estimation. Objects are sampled from
multivariate Boltzmann distribution z = (z, ..., z). We
observe only a part of the parameters (nj, ..., n}). Estimate z.

Application 1: Combinatorial learning

Hidden parameter estimation

» Hidden parameter estimation. Objects are sampled from
multivariate Boltzmann distribution z = (z, u). We observe
only the parameter n corresponding to z. Estimate z = (z, u).

> Maximising the log-likelihood we obtain:

>k A k2" uk
L(Xi,..., X0 | z, Elo’7’—>max
(1) | U g F(Z, u) zu
» Multiparametric #P-complete problem:

n

Zn;—na;_FZO

i=1

[z7]F(z, u) " F(z, u)

Ou[z"]F(z, u) OuF(z,u
Z [z"]F((z,u)

Application 1: Combinatorial learning

Hidden parameter estimation

» Multiparametric #P-complete problem:

n

n,-—nazFZO
2mim g

i=1

Ou[2"]F(z, u) 0uF(z,u
Z [z"]F((z,u)

[z"]F(z, u) " F(z,u)

» Boltzmann relaxation:

Ou2"]F(z, u) ~ OuF(z*(n;), u)
[z"]F(z, u) F(z*(n;), u)

The parameter z*(n;) can be found by the tuning procedure

Application 2. Software testing using lambda calculus

Application 2: software testing

Goal: finding bugs in optimising compilers using corner-case
random sampling of simply typed lambda terms

The Glasgow Haskell Compiler

#5557 closed bug (fixed)

BrxH HpoHal

Code using seq has wrong strictness (too lazy)

Coowwmn: michal.palka

MpuopuTeT: high 3ran paspaSoTiu:
KOMNOHEeHT: Compiler Bepcua:
Kniouessie cnosa: seq strictness strict lazy Konus:

Operating System: Unknown/Multiple Architecture:

Type of fallure: Incorrect result at runtime Test Case:

Application 2: software testing

\ » Plain lambda terms:

@ Motzkin trees whose leaves
contain non-negative

@ integers.

» Closed lambda terms:
Plane lambda terms whose

/@\5} leaf values do not exceed
/Q their unary height.
» Holy grail: simply typed
®

lambda terms (in progress)

D9y 27 ely)

Application 2: software testing

Tuning uniform leaf index frequencies from 0 to 8:

TABLE 3. Empirical frequencies (with respect to the term size) of index distribution.

Index 0 | 1 | 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 | 7 | 8
Tuned frequency | 8.00% | 8.00% | 8.00% | 8.00% | 8.00% | 8.00% | 8.00% | 8.00% | 8.00%
Observed frequency | 7.50% | 7.77% | 8.00% | 8.23% | 8.04% | 7.61% | 8.53% | 7.43% | 9.08%
Default frequency | 21.91% | 12.51% | 5.68% | 2.31% | 0.74% | 0.17% | 0.20% | 0.07% | - - -

Can be also tuned:
» number of atomic nodes of distinguished colors

» number of redexes (i.e. patterns necessary to perform a
computation step in lambda calculus)

» number of head abstractions
» number of closed subterms

» number of any tree-like patterns

Application 3. Models of random trees

Application 3. Models of random trees
Model 1: Multi-partite rooted labelled trees

Target expectation tuning (0.01,0.03,0.05,0.07,0.09,0.11,0.13,0.15,0.17,0.19)

0175
0150

Ti(z, ..o uq) = ZUIETI(Z’"' """ ua)

0125

0100
Tz, ... uq) = Zuzerz(z’ul """ ua)

0.075
0.050
0.025

Ti(z,u1,..5uq) 0000

090% 324% 504% 7.44% 9.42% 111% 13.9% 14.7% 16.3% 17.7%

Ta(z, u1, ..., uqg) = zuge

Lzl o o |os [o || w|w|w|w|u
[03]0009 | 188137 [129]1.26]1.25] 124|123 | 123 352

Table 1: Numerical values for
arguments

Application 3. Models of random trees

Model 2: Otter trees with coloured leaves

Target expectation tuning (0.01,0.03,0.05,0.07,0.09,0.11,0.13,0.15,0.17,0.19)

0.

01
0150

012

0100

d

007

T(z,u1,...,uq) =z E ui + MSety(T(z, uy, ..., ug)) voso
i=1 0.025

T(z,ury. . ug)? + T(2, 02, .., 4%
MSety(T(z, u1, ..., uq)) = (2, ud) (£, i, Yg oo

118% 334% 564% 7.25% 920% 11.0% 118% 14.9% 163% 19.1%

‘ "z ‘ wnz ‘ u3z ‘ usz ‘ usz ‘ UgZ ‘ u;z ‘ ugz ‘ ugz ‘umz
[0.005 | 0.015 | 0.025 | 0.035 | 0.044 | 0.054 | 0.063 | 0.072 | 0.081 | 0.09

Table 2: Numerical values for arguments

Application 4. RNA folding design

Application 4: RNA folding design

[Hammer, Ponty, Wang, Will *2019]

» Problem. Given the set of allowed
secondary structures (s, -, s¢),
sample uniformly at random RNA
satisfying each of those structures.

> Proposition. The problem is
= equivalent to enumerating
independent sets in bipartite graphs

Application 4: RNA folding design

image taken from [Hammer, Ponty, Wang, Will *2019]

Step 1: construct a graph based on secondary structures

=8
\/ P k=t i
4 | by
i Ry \q—\p—\ I \f R3
v b—d T ITMnse— //,,—-_\\\\
N
\@

Ty
~—u
—! abcdefan i

Application 4: RNA folding design

image taken from [Hammer, Ponty, Wang, Will *2019]

Step 2: construct a suitable tree decomposition and a context-free
grammar

m{uge}%{pgu}(xga Xu) = Z (m{uea}ﬁ{uge}(xm Xe)) (m{es}ﬁ{uge}(xe))

allowed x,

Application 4: RNA folding design

image taken from [Hammer, Ponty, Wang, Will *2019]

Step 3: add the parameters
> each secondary structure energy (marked by u,)

> letter frequency

mu—)v(X) — Z H mw—)u(Xa ,)?) « uc—energy of added edge

X w—u

Application 4: RNA folding design
image taken from [Hammer, Ponty, Wang, Will °2019]
Conclusion:

» The energies of the secondary structures and letter frequencies
can be tuned

» This can be subsequently refined to energies of adjacent pairs
in RNA sequence, triples, etc.

» Empirically observed energy distributions are Gaussian

R .
z ___;r|||||“|||.;

Energy [kcal /mol]

Application 5: Bose—Einstein condensate in quantum harmonic
oscillator

Bianconi—Barabasi model

An evolving network can be compared to a diluted gas at low temperature

Bose-Einstein condensation in evolving networks

Bianconi—Barabasi model

Bose gas network evolution
temperature temperature
energy energy
particle half-edge

number of energy levels

Bose—Einstein condensation

< number of nodes
topological phase transition

In this model, the number of par-
ticles on the energy level

e follows the Bose statistics n(¢) =
m which also represents
the number of edges linking to

nodes with energy ¢.

Application 5: Bose—Einstein condensate in quantum
harmonic oscillator

Integer partitions <+ 1-dimensional quantum oscillator

18= 14+ D+ 2+ 4 + 5

—

U R
|

51 |

\

partitions = multiset(N) = multiset(multiset(1))

Application 5: Bose—Einstein condensate in quantum

harmonic oscillator
[Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]

Coloured partitions <+ d-dimensional quantum oscillator

N+d-1
coloured partitions = multiset(+N > = MSet(MSet(d - 1))

Application 5: Bose—Einstein condensate in quantum

harmonic oscillator
Coloured partitions <+ d-dimensional quantum oscillator

Weighted partition Random particle assembly
Sum of numbers Total energy
Number of colours Dimension (d)
Row of Young table Particle
Number of rows Number of particles
Number of squares in the row Energy of a particle (\)
Partition limit shape Bose—-Einstein condensation
(d+/)\‘71) Number of particle states

Problem: generate random assemblies with given
numbers of colours (ny, ny, ..., ng).

Application 5: Bose—Einstein condensate in quantum

harmonic oscillator
Challenge: express the inner generating function

1 1 1

MSET(.‘I’.z’”.’.e):]iZ]"]722 172/

in DCP rules using only polynomial number of additions and

multiplications.
Solution: convexity proof of length ©(¢?) using dynamic

programming.

(A) [5,10,15,2025] (B) [4.4,4,4,10,20,30,40] (C) [80,40,20,10,9,8,7,6,5]

Application 6: Substitution-closed permutation classes

Simple permutations and inflations
» Simple permutation: does not contain intervals
{a,a+1,...,b} = {c,c+1,....,d}

of length strictly between 1 and n. Permutation from the figure
is not simple because it contains an interval {1,2,3} — {5,6,7}.

» Inflation is obtained by replacing each entry by interval

[P

] 5‘.2_5 T

H N W A U O N ®
E {]

H N W A U O N
{]

Substitution-closed classes

Theorem (Albert, Atkinson ’2005)
Let C be substitution-closed and contain 12 and 21. Let S be the class
of all simple permutations contained in C. Then, C satisfies

C={e}+12[C*,Cl+21[C",Cl+) _x[C.C,....C]

TeS
ct={e}+21[C7,Cl+) _n[C.C,....C]
TES
C™={e}+12[C*,Cl+) ~[c.C,....C].
TES

Remark
Algorithm for computing specifications of permutation classes

containing finitely many simple permutations is given in
[Bassino, Bouvel, Pierrot, Pivoteau, Rossin 2017]

Substitution-closed classes

Expected number of simple permutations 7 € S

C={e}+12[CT,Cl+21[C".C]+) _ u,m[C,C,...,C]

TES
Ct={e}+21C",Cl+) _usm[C,C,....C]
TeS
C™ ={e}+12[CT,Cl+) um[C.C,....C].
TeS

By tuning the expectations attached to (uy)res, we can alter the
expected frequencies of inflation used during the construction of a
permutation.

Conclusion

Conclusion

1. Boltzmann sampler is a relaxation of exact-parameter
sampling. It samples in linear time and can be tuned very
efficiently now (using a polynomial algorithm).

2. A wide variety of combinatorial classes can be reduced to
unambiguous context-free grammar

3. To incorporate new exotic classes, convex optimisation and
combinatorics should work together

Thank you for your attention

