Multiparametric Boltzmann sampling: on the crossroad of probability and convex optimisation

Maciej Bendkowski ^a Sergey Dovgal Olivier Bodini ^b

^a Jagellonian University, Krakow

^bLIPN, Université Sorbonne Paris Nord

SPOC Seminar, 13/10/2021

COFINANCÉ PAR L'**UNION** EUROPÉENNE REGION BOURGOGNE FRANCHE COMTE

Plan

- 1. Introduction to random sampling
- 2. Unambiguous context-free grammars
- 3. Exact multiparametric sampling is NP-hard
- 4. Boltzmann sampling
- 5. Tuning a Boltzmann sampler
- 6. Convex optimisation complexity
- 7. Implementation
- 8. Applications and examples

Introduction

Random sampling

Problem Let $\theta \in \mathbb{R}^d$, \mathbb{P}_{θ} be a given probability distribution on strings^{*}.

Sample $X \sim \mathbb{P}_{\boldsymbol{\theta}}$

* All discrete objects can be encoded by strings!

Some examples

Uniform sampling of rooted trees with 4 vertices

Controlled (parametric) sampling: $X \sim \mathbb{P}(X \mid \text{number of leaves} = 2)$

Some more examples

Closed lambda terms

Some more examples

RNA with given secondary structure energies

Some examples

- Trees with *n* nodes $\{\{\bullet\}\{\bullet\}\{\bullet\}\}\}$
- Graphs, networks (with given parametric properties)
- Tilings (with given number of tiles of each color)
- RNA sequences (with given pairing frequencies)
- Iambda terms (with given proportion of beta-redexes)
- ...music with a given amount of sadness...

Why random sampling?

Motivations for random sampling

- Art and entertainment
 - T-shirt printing
 - Paintings, decorations, tilings
 - Music composition
 - Artificial intelligence artwork
- Monte-Carlo simulations
 - Property-based software testing (QUICкСнеск, lambda terms)
 - Biology (cell dynamics, RNA structures)
 - Statistical physics (random maps, Bose-Einstein condensate, Ising model, tilings, plane partitions)

Theoretical computer science

- Random permutations, sorting algorithms, cellular automata
- Random graphs and community detection
- Crypto primitives and low-level programming
- Concurrent process analysis, queueing systems
- Automata sampling

Unambiguous context-free grammars

Unambiguous context-free grammars Example

Weighted unambiguous context-free grammars Example

Trees with \leq 4 children

$$\{(\bullet), (\bullet(\bullet)), (\bullet(\bullet)(\bullet)), (\bullet(\bullet(\bullet))), (\bullet(\bullet)(\bullet)(\bullet)), \ldots\}$$

Weighted grammar

$$T = (\bullet_0) | (\bullet_1 T) | (\bullet_2 TT) | (\bullet_3 TTT) | (\bullet_4 TTTT)$$

Color of the node reflects how many children it has.

Controlled sampling with rooted trees Example

$$T = (\bullet_0) | (\bullet_1 T) | (\bullet_2 TT) | (\bullet_3 TTT) | (\bullet_4 TTTT)$$

- Randomly sample rooted trees with N nodes
- Quantity of •1 nodes is n1
- Quantity of \bullet_2 nodes is n_2
- Quantity of \bullet_3 nodes is n_3
- Quantity of •4 nodes is n3
- ▶ $n_1 + n_2 + n_3 + n_4 < N$

Exact multiparametric sampling

Let S_i be defined by an unambiguous context-free grammar (CFG)

$$S_i \rightarrow \Big|_{j} T_{ij}(S_1,\ldots,S_n,\bullet_1,\bullet_2,\bullet_3,\ldots,\bullet_d)$$

where $(T_{ij})_{ij}$ are transitions, and $(\bullet_1, \bullet_2, \bullet_3, \dots, \bullet_d)$ are alphabet letters.

Problem

Given positive integers $(n_1, n_2, ..., n_d)$, sample a word w with n_k literals of color k from a context-free grammar uniformly at random;

Complexity

Exact multiparametric sampling from CFG is NP-hard

Exact sampling is NP-hard: reduction from #2-SAT

- ▶ [Jerrum, Valiant, Vazirani '86] If there is a fully polynomial *almost uniform generator* for *R*, then there is a fully polynomial *randomized approximation scheme* (FPRAS) for *N*_{*R*}.
- [Welsh, Gale '2001] Unless NP = RP, there is no FPRAS for #2-SAT
- [Bendkowski, Bodini, D. '2020] #2-SAT can be reduced to counting the number of words in unambiguous context-free grammars

 \Rightarrow exact sampling cannot be approximated unless NP = RP

Exact sampling is NP-hard: reduction from #2-SAT [Welsh, Gale '2001] + [Jerrum, Valiant, Vazirani '86] + [Bendkowski, Bodini, D. '2020]

Example. Consider a 2-CNF formula

$$F = \underbrace{(x_1 \lor \overline{x}_2)}_{c_1} \underbrace{(x_1 \lor \overline{x}_4)}_{c_2} \underbrace{(\overline{x}_2 \lor \overline{x}_3)}_{c_3} \underbrace{(\overline{x}_2 \lor \overline{x}_4)}_{c_4} \underbrace{(\overline{x}_3 \lor x_4)}_{c_5}$$
Step 1

Consider a grammar with an initial state A:

$$A = (X_1 + \overline{X}_1) \dots (X_4 + \overline{X}_4)$$

$$X_1 = c_1 c_2, \quad \overline{X}_1 = 1, \quad X_2 = 1, \quad \overline{X}_2 = c_1 c_3 c_4, \cdots$$
Then, $\#2SAT(F) = \#\{w \leftarrow A \mid |w|_{c_1} \ge 1, \dots, |w|_{c_5} \ge 1\}$

reduction from #2-SAT (continuation)

$$F = \underbrace{(x_1 \lor \overline{x}_2)(x_1 \lor \overline{x}_4)(\overline{x}_2 \lor \overline{x}_3)(\overline{x}_2 \lor \overline{x}_4)(\overline{x}_3 \lor x_4)}_{c_1 c_2 c_3 c_4 c_5}$$

$$A = (X_1 + \overline{X}_1) \dots (X_4 + \overline{X}_4)$$

$$X_1 = c_1 c_2, \quad \overline{X}_1 = 1, \quad X_2 = 1, \quad \overline{X}_2 = c_1 c_3 c_4, \cdots$$

$$\# 2SAT(F) = \# \{ w \leftarrow A \mid |w|_{c_1} \ge 1, \dots, |w|_{c_5} \ge 1 \}$$

Step 2.

►
$$B = A(1 + c_1) \dots (1 + c_5)$$

#2SAT(F) = #{ $w \leftarrow B | |w|_{c_1} = 2, \dots, |w|_{c_5} = 2$ }

What does it all mean?

Weighted unambiguous context-free grammars can encode a lot of things...

We can take that to our advantage!

But we cannot sample efficiently - very hard! What to do?

Boltzmann sampling

Generating functions and the symbolic method

Framework

- Discrete objects are represented by *words* in a finite alphabet.
- The *size* of the object is the number of its letters.
- Let *a_n* be the number of words of length *n*

Generating function of the counting sequence:

$$A(z)=\sum_{n=0}^{\infty}a_nz^n$$

Boltzmann distribution

Probability output of the Boltzmann samplers

Let S(z) be the generating function of the language S:

$$S(z)=\sum_{n\geq 0}a_nz^n$$

Consider a distribution \mathbb{P}_z on words $w \in S$:

• conditioned on word length |w| = n, the distribution is uniform

length distribution follows Gibbs law

$$\mathbb{P}_z(|w|=n)=\frac{a_nz^n}{S(z)}$$

expected word length:

$$\mathbb{E}_z(n) = z \frac{S'(z)}{S(z)}$$

Example: lambda terms in de Bruijn notation

Example: lambda terms in de Bruijn notation

$$\mathcal{L} ::= \lambda \mathcal{L} \mid (\mathcal{L}\mathcal{L}) \mid \underline{\mathbf{n}} \qquad \qquad \mathcal{L}(z) = z\mathcal{L}(z) + z\mathcal{L}(z)^2 + \frac{z}{1-z}$$
$$\underline{\mathbf{n}} ::= \underline{\mathbf{0}} \mid \underline{\mathbf{Sn}}. \qquad \qquad T_n = T_{n-1} + \sum_{k=1}^n T_k T_{n-k-1} + 1$$

Boltzmann sampling

Algorithm 1: Boltzmann sampler for plain lambda terms

Input: Integer number n

Output: Random term of variable size, target expected size *n* **begin**

Precompute z as a function of n // stay tuned Function Generate(z):

Carefully look at the equation

$$L(z) = zL(z) + zL(z)^2 + \frac{z}{1-z}$$

Flip a weighted coin $X \in \{\lambda, \mathbb{Q}, \underline{n}\}$ with weights

$$\mathbb{P}_{\lambda} = \frac{zL(z)}{L(z)}, \quad \mathbb{P}_{\mathbb{Q}} = \frac{zL^{2}(z)}{L(z)}, \quad \mathbb{P}_{\underline{n}} = \frac{z}{\frac{1-z}{L(z)}}$$

if $X = \lambda$ then return λ Generate (n - 1) // abstraction; if X = @ then L := Generate(z); R := Generate(z);return (LR) // application; if $X = \underline{n}$ then return Geom(z) // de Bruijn index;

Multivariate generating functions

Consider a language $S \subset \Sigma^*$ where $\Sigma = \{\bullet_1, \bullet_2, \bullet_3, \bullet_4\}$ is finite. Let a_{n_1, n_2, n_3, n_4} count the number of words $w \in S$ containing

- \blacktriangleright n_1 letters \bullet_1 ,
- \blacktriangleright *n*₂ letters \bullet_2 ,
- \blacktriangleright *n*₃ letters \bullet_3 ,
- \blacktriangleright *n*₄ letters •₄;

Its multivariate generating function is

$$S(z_1, z_2, z_3, z_4) = \sum_{n \ge 0} a_{n_1, n_2, n_3, n_4} z_1^{n_1} z_2^{n_2} z_3^{n_3} z_4^{n_4}$$

Boltzmann distribution

$$\mathbb{P}(n_1, n_2, n_3, n_4 \mid z_1, z_2, z_3, z_4) = \frac{a_{n_1, n_2, n_3, n_4} z_1^{n_1} z_2^{n_2} z_3^{n_3} z_4^{n_4}}{S(z_1, z_2, z_3, z_4)}$$

Example: lambda terms and their parameters

Abstractions, variables, successors and redexes marked separately:

$$L(z, \vec{u}) = u_{(abs)}zL(z, \vec{u}) + N(z, \vec{u})$$

$$N(z, \vec{u}) = \frac{u_{(var)}z}{1 - u_{(suc)}z} + u_{(red)}u_{(abs)}z^{2}L(z, \vec{u})^{2} + zN(z, \vec{u})L(z, \vec{u}).$$

Multiparametric Boltzmann sampling

Plain lambda terms with given portions of abstractions, variables, successors and redexes

$$L(z, \vec{u}) = u_{(abs)} z L(z, \vec{u}) + N(z, \vec{u})$$

$$N(z, \vec{u}) = \frac{u_{(var)} z}{1 - u_{(suc)} z} + u_{(red)} u_{(abs)} z^2 L(z, \vec{u})^2 + z N(z, \vec{u}) L(z, \vec{u})$$

Algorithm 2: Boltzmann sampler for plain lambda terms

Input: Target expectations *N*, *n*_(abs), *n*_(var), *n*_(suc), *n*_(red) **Output:** Random term with target expected size *N*, and given expected parameters

begin

Precompute
$$(z, u_{(abs)}, u_{(var)}, u_{(suc)}, u_{(red)})$$
 as
functions of $(N, n_{(abs)}, n_{(var)}, n_{(suc)}, n_{(red)})$
// stay tuned;
Function $\Gamma L(z, u_{(abs)}, u_{(var)}, u_{(suc)}, u_{(red)})$:
Generate $X \in \{0, 1\}$ such that
 $\mathbb{P}(X = 0) = \frac{u_{(abs)} ZL(z, \vec{u})}{L(z, \vec{u})},$
 $\mathbb{P}(X = 1) = \frac{N(z, \vec{u})}{L(z, \vec{u})}$
 $X = 0 \Rightarrow$ return $\lambda \Gamma L(z, \vec{u});$
 $X = 1 \Rightarrow$ return $\Gamma N(z, \vec{u});$

Function

$$\begin{split} & \Gamma N(z, u_{(abs)}, u_{(var)}, u_{(sac)}, u_{(red)}): \\ & \text{Generate } X \in \{0, 1, 2\} \text{ such that} \\ & \mathbb{P}(X = 0) = \frac{\frac{u_{(var)}z}{1 - u_{(usc)}z}}{N(z, \vec{u})}, \\ & \mathbb{P}(X = 1) = \frac{u_{(red)}u_{(abs)}z^2L(z, \vec{u})^2}{N(z, \vec{u})}, \\ & \mathbb{P}(X = 2) = \frac{zN(z, \vec{u})L(z, \vec{u})}{N(z, \vec{u})} \\ & X = 0 \Rightarrow \text{ return } \frac{\text{Geom}(zu_{(suc)});}{N(z, \vec{u}))\Gamma L(z, \vec{u});} \\ & X = 1 \Rightarrow \text{ return } (\Gamma N(z, \vec{u}))\Gamma L(z, \vec{u}); \end{split}$$

Tuning a Boltzmann sampler as convex optimisation

Mathematical formulation

$$S(z_{1}, z_{2}, z_{3}, ..., z_{d}) = \sum_{n \ge 0} a_{n_{1}, n_{2}, n_{3}, ..., n_{d}} z_{1}^{n_{1}} z_{2}^{n_{2}} z_{3}^{n_{3}} \cdots z_{d}^{n_{d}}$$
$$\mathbb{E}_{z_{1}, z_{2}, z_{3}, ..., z_{d}}(\xi_{1}) = z_{1} \frac{\partial_{z_{1}} S(z_{1}, z_{2}, z_{3}, ..., z_{d})}{S(z_{1}, z_{2}, z_{3}, ..., z_{d})} = N_{1},$$
$$\vdots$$
$$\mathbb{E}_{z_{1}, z_{2}, z_{3}, ..., z_{d}}(\xi_{d}) = z_{d} \frac{\partial_{z_{d}} S(z_{1}, z_{2}, z_{3}, ..., z_{d})}{S(z_{1}, z_{2}, z_{3}, ..., z_{d})} = N_{d}.$$

•

Tuning of a multiparametric Boltzmann sampler

!! The handles cannot be turned independently !!

Convex optimisation formulation

Universal version

Let $z_i = e^{\zeta_i}$. Tuning is equivalent to convex optimisation problem

$$\begin{cases} \varphi - \mathbf{N}^\top \boldsymbol{\zeta} \to \min_{\boldsymbol{\zeta}, \varphi}, \\ \varphi \geqslant \log S(e^{\boldsymbol{\zeta}}) \end{cases}$$

Idea. log $\sum e^{t_i}$ is a convex function.

$$abla_{\boldsymbol{\zeta}}\left(\log S(e^{\boldsymbol{\zeta}})-\boldsymbol{N}^{ op}\boldsymbol{\zeta}
ight)=0$$

if and only if

$$z_{1} \frac{\partial_{z_{1}} S(z_{1}, z_{2}, z_{3}, \dots, z_{d})}{S(z_{1}, z_{2}, z_{3}, \dots, z_{d})} = N_{1},$$

$$\vdots$$

$$z_{d} \frac{\partial_{z_{d}} S(z_{1}, z_{2}, z_{3}, \dots, z_{d})}{S(z_{1}, z_{2}, z_{3}, \dots, z_{d})} = N_{d}.$$

Case study: unambiguous context-free grammars

Let $C = \Phi(C, Z)$ be a multi-parametric CFG: • $C = (C_1, ..., C_m)$, sampling from the state C_1 • $\Phi = (\Phi_1, ..., \Phi_m)$ is a transition matrix • $Z = (Z_1, ..., Z_d)$ are distinct terminals • $N = (N_1, ..., N_d)$ is a tuning vector Let $z = e^{\xi}$. The solution comes from the convex problem:

$$egin{cases} c_1 - oldsymbol{N}^ op oldsymbol{\zeta} op \min_{oldsymbol{\zeta},oldsymbol{c}}, \ c \geqslant \log \Phi(e^{oldsymbol{c}}, e^{oldsymbol{\zeta}}) \end{cases}$$

Convex optimisation complexity

Interior point method

Convex optimisation programs

$$\begin{cases} \boldsymbol{c}^{\top} \boldsymbol{z} \to \min_{\boldsymbol{z}} \\ f_i(\boldsymbol{z}) \leqslant 0 \text{ for } i = 1, \dots, m \end{cases}$$

Nesterov and Nemirovskii IPM:

$$\mathcal{O}\left(\sqrt{\nu}\log\left(\frac{\nu\mu_0}{\varepsilon}\right)\right)$$
 Newton iterations,

where

- ν is the *self-concordance* parameter
- μ_0 is related to the choice of the starting point
- \triangleright ε is the target precision (in the solution space)

Self-concordant functions

Just if you are curious to see the most used criterion

If f(x) is a three times continuously differentiable real-valued convex function such that

$$|f'''(x)| \leqslant 3\beta x^{-1}f''(x), \quad x > 0$$

for some $\beta > 0$, then

$$F(t,x) = -\log(t - f(x)) - \max[1,\beta^2]\log x$$

is a self-concordant barrier with $\nu = 1 + \max[1, \beta^2]$.

• Positive linear combinations are also self-concordant with $\nu = \sum \alpha_i \nu_i$
Barriers for combinatorial constructions

• Context-free unambiguous: $\nu = O(\# \text{ of terms})$

Other constructions: cycles, sets, restricted cycles and sets

More constructions: unlabelled cycles, multisets, ...

Implementation

Boltzmann Brain + Paganini

Grammar example: Motzkin trees with non-uniform weights

$$M(z) = z + uz^2 M(z) + z^2 M^2(z)$$

-- Motzkin trees MotzkinTree = Leaf Unary MotzkinTree (2) [0.3] Binary MotzkinTree MotzkinTree (2).

Tiling example, practical benchmark

Man at an an a constant and a consta

Tilings 9 \times *n* form a regular grammar with

- 1022 tuning parameters
- 19k states
- 357k transitions

We tune for a uniform distribution for tile frequency. This results in **few hours** of tuning.

Tiling example, practical benchmark

Applications and examples

- 1. Combinatorial learning
- 2. Software testing using lambda calculus
- 3. Models of random trees
- 4. RNA folding design
- 5. Bose-Einstein condensate in quantum harmonic oscillator
- 6. Permutation classes

Example: hidden parameter estimation

Maximum likelihood estimate for Boltzmann distribution.

$$L(X_1, \dots, X_n | z) = \sum_{i=1}^n \log \mathbb{P}(|X_i| = n | z) = \log \frac{a_{n_i} z^{n_i}}{F(z)}$$
$$= \sum \log a_{n_i} + \sum n_i \log z - n \log F(z) \to \max_z$$

We obtain the tuning equation:

$$\frac{\sum_{i=1}^{n} n_i}{n} = z \frac{F'(z)}{F(z)}$$

► Hidden parameter estimation. Objects are sampled from multivariate Boltzmann distribution *z* = (*z*₁,..., *z_k*). We observe only a part of the parameters (*n*^{*}₁,..., *n^{*}_ℓ*). Estimate *z*.

Hidden parameter estimation

- ▶ Hidden parameter estimation. Objects are sampled from multivariate Boltzmann distribution z = (z, u). We observe only the parameter *n* corresponding to *z*. Estimate z = (z, u).
- Maximising the log-likelihood we obtain:

$$L(X_1,\ldots,X_n \mid z,u) = \sum_i \log \frac{\sum_k a_{n_i,k} z^{n_i} u^k}{F(z,u)} \to \max_{z,u}$$

Multiparametric #P-complete problem:

$$\sum_{i=1}^{n} n_i - n \frac{\partial_z F}{F} = 0$$
$$\sum_{i=1}^{n} \frac{\partial_u [z^{n_i}] F(z, u)}{[z^{n_i}] F(z, u)} - n \frac{\partial_u F(z, u)}{F(z, u)} = 0$$

Hidden parameter estimation

Multiparametric #P-complete problem:

$$\sum_{i=1}^{n} n_i - n \frac{\partial_z F}{F} = 0$$
$$\sum_{i=1}^{n} \frac{\partial_u [z^{n_i}] F(z, u)}{[z^{n_i}] F(z, u)} - n \frac{\partial_u F(z, u)}{F(z, u)} = 0$$

Boltzmann relaxation:

$$\frac{\partial_u[z^{n_i}]F(z,u)}{[z^{n_i}]F(z,u)} \approx \frac{\partial_u F(z^*(n_i),u)}{F(z^*(n_i),u)}$$

The parameter $z^*(n_i)$ can be found by the tuning procedure

Application 2. Software testing using lambda calculus

Application 2: software testing

Goal: finding bugs in optimising compilers using **corner-case** random sampling of simply typed lambda terms

Application 2: software testing

- Plain lambda terms: Motzkin trees whose leaves contain non-negative integers.
- Closed lambda terms: Plane lambda terms whose leaf values do not exceed their unary height.
- Holy grail: simply typed lambda terms (in progress)

Application 2: software testing

Tuning uniform leaf index frequencies from 0 to 8:

TABLE 3. Empirical frequencies (with respect to the term size) of index distribution.

Index	<u>0</u>	1	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7	<u>8</u>
Tuned frequency	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%
Observed frequency	7.50%	7.77%	8.00%	8.23%	8.04%	7.61%	8.53%	7.43%	9.08%
Default frequency	21.91%	12.51%	5.68%	2.31%	0.74%	0.17%	0.20%	0.07%	

Can be also tuned:

- number of atomic nodes of distinguished colors
- number of redexes (i.e. patterns necessary to perform a computation step in lambda calculus)
- number of head abstractions
- number of closed subterms
- number of any tree-like patterns

Application 3. Models of random trees

Application 3. Models of random trees

Model 1: Multi-partite rooted labelled trees

Target expectation tuning (0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19)

$$T_{1}(z, u_{1}, \dots, u_{d}) = zu_{1}e^{T_{2}(z, u_{1}, \dots, u_{d})}$$
$$T_{2}(z, u_{1}, \dots, u_{d}) = zu_{2}e^{T_{3}(z, u_{1}, \dots, u_{d})}$$
$$\vdots$$
$$T_{d}(z, u_{1}, \dots, u_{d}) = zu_{d}e^{T_{1}(z, u_{1}, \dots, u_{d})}$$

Table 1: Numerical values forarguments

Application 3. Models of random trees

Model 2: Otter trees with coloured leaves

Target expectation tuning (0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19)

$$T(z, u_1, ..., u_d) = z \sum_{i=1}^{d} u_i + MSet_2(T(z, u_1, ..., u_d))$$

$$MSet_2(T(z, u_1, ..., u_d)) = \frac{T(z, u_1, ..., u_d)^2 + T(z^2, u_1^2, ..., u_d^2)}{2}$$

$$\frac{u_{12}z}{0.005} \frac{u_{32}z}{0.015} \frac{u_{32}z}{0.025} \frac{u_{4}z}{0.034} \frac{u_{5}z}{0.054} \frac{u_{5}z}{0.036} \frac{u_{5}z}{0.072} \frac{u_{5}z}{0.081} \frac{u_{5}z}{0.09}$$

$$Table 2: Numerical values for arguments$$

[Hammer, Ponty, Wang, Will '2019]

- **Problem.** Given the set of allowed secondary structures (s_1, \dots, s_k) , sample uniformly at random RNA satisfying each of those structures.
- Proposition. The problem is equivalent to enumerating independent sets in bipartite graphs

image taken from [Hammer, Ponty, Wang, Will '2019]

Step 1: construct a graph based on secondary structures

image taken from [Hammer, Ponty, Wang, Will '2019]

Step 2: construct a suitable tree decomposition and a context-free grammar

 $m_{\{uge\} \rightarrow \{pgu\}}(x_g, x_u) = \sum_{\text{allowed } x_e} \left(m_{\{uea\} \rightarrow \{uge\}}(x_u, x_e) \right) \left(m_{\{es\} \rightarrow \{uge\}}(x_e) \right)$

image taken from [Hammer, Ponty, Wang, Will '2019]

Step 3: add the parameters

- each secondary structure energy (marked by u_c)
- letter frequency

$$m_{u
ightarrow v}(x) = \sum_{\widetilde{x}} \prod_{w
ightarrow u} m_{w
ightarrow u}(x,\widetilde{x}) imes u_c^{- ext{energy of added edge}}$$

image taken from [Hammer, Ponty, Wang, Will '2019]

Conclusion:

- The energies of the secondary structures and letter frequencies can be tuned
- This can be subsequently refined to energies of adjacent pairs in RNA sequence, triples, etc.
- Empirically observed energy distributions are Gaussian

Bianconi-Barabási model

An evolving network can be compared to a diluted gas at low temperature

Bose-Einstein condensation in evolving networks Bianconi-Barabási model

Bose gas	network evolution				
temperature	temperature				
energy	energy				
particle	half-edge				
number of energy levels	\leqslant number of nodes				
Bose-Einstein condensation	topological phase transition				

In this model, the number of particles on the energy level ε follows the Bose statistics $n(\varepsilon) = \frac{1}{e^{\beta(\varepsilon-\mu)}-1}$ which also represents the number of edges linking to nodes with energy ε .

Integer partitions \leftrightarrow **1-dimensional quantum oscillator**

partitions = multiset(\mathbb{N}) = multiset(multiset(1))

[Bernstein, Fahrbach, Randall], [Bendkowski, Bodini, D.]

Coloured partitions \leftrightarrow d-dimensional quantum oscillator

coloured partitions = multiset
$$\binom{\mathbb{N} + d - 1}{\mathbb{N}} = MSet(MSet(d \cdot 1))$$

 $\textbf{Coloured partitions} \leftrightarrow \textbf{d-dimensional quantum oscillator}$

Weighted partition	Random particle assembly			
Sum of numbers	Total energy			
Number of colours	Dimension (<i>d</i>)			
Row of Young table	Particle			
Number of rows	Number of particles			
Number of squares in the row	Energy of a particle (λ)			
Partition limit shape	Bose-Einstein condensation			
$\binom{d+\lambda-1}{\lambda}$	Number of particle states			

Problem: generate random assemblies with given numbers of colours (n_1, n_2, \ldots, n_d) .

Challenge: express the inner generating function

$$MSET(\bullet_1, \bullet_2, \cdots, \bullet_{\ell}) = \frac{1}{1-z_1} \cdot \frac{1}{1-z_2} \cdot \cdots \cdot \frac{1}{1-z_{\ell}} - 1$$

in DCP rules using only polynomial number of additions and multiplications.

Solution: convexity proof of length $\Theta(\ell^2)$ using dynamic programming.

Application 6: Substitution-closed permutation classes

Simple permutations and inflations

Simple permutation: does not contain intervals

$$\{a, a+1, ..., b\} \rightarrow \{c, c+1, ..., d\}$$

of length strictly between 1 and *n*. Permutation from the figure is not simple because it contains an interval {1, 2, 3} → {5, 6, 7}. *Inflation* is obtained by replacing each entry by interval

Substitution-closed classes

Theorem (Albert, Atkinson '2005)

Let C be substitution-closed and contain 12 and 21. Let S be the class of all simple permutations contained in C. Then, C satisfies

$$\mathcal{C} = \{\bullet\} + 12[\mathcal{C}^+, \mathcal{C}] + 21[\mathcal{C}^-, \mathcal{C}] + \sum_{\pi \in \mathcal{S}} \pi[\mathcal{C}, \mathcal{C}, \dots, \mathcal{C}]$$
$$\mathcal{C}^+ = \{\bullet\} + 21[\mathcal{C}^-, \mathcal{C}] + \sum_{\pi \in \mathcal{S}} \pi[\mathcal{C}, \mathcal{C}, \dots, \mathcal{C}]$$
$$\mathcal{C}^- = \{\bullet\} + 12[\mathcal{C}^+, \mathcal{C}] + \sum_{\pi \in \mathcal{S}} \pi[\mathcal{C}, \mathcal{C}, \dots, \mathcal{C}].$$

Remark

Algorithm for computing specifications of permutation classes containing finitely many simple permutations is given in [Bassino, Bouvel, Pierrot, Pivoteau, Rossin '2017]

Substitution-closed classes

Expected number of simple permutations $\pi \in \mathcal{S}$

$$\mathcal{C} = \{\bullet\} + 12[\mathcal{C}^+, \mathcal{C}] + 21[\mathcal{C}^-, \mathcal{C}] + \sum_{\pi \in \mathcal{S}} u_\pi \pi[\mathcal{C}, \mathcal{C}, \dots, \mathcal{C}]$$
$$\mathcal{C}^+ = \{\bullet\} + 21[\mathcal{C}^-, \mathcal{C}] + \sum_{\pi \in \mathcal{S}} u_\pi \pi[\mathcal{C}, \mathcal{C}, \dots, \mathcal{C}]$$
$$\mathcal{C}^- = \{\bullet\} + 12[\mathcal{C}^+, \mathcal{C}] + \sum_{\pi \in \mathcal{S}} u_\pi \pi[\mathcal{C}, \mathcal{C}, \dots, \mathcal{C}].$$

By tuning the expectations attached to $(u_{\pi})_{\pi \in S}$, we can alter the expected frequencies of inflation used during the construction of a permutation.

Conclusion

Conclusion

- 1. Boltzmann sampler is a relaxation of exact-parameter sampling. It samples in linear time and can be tuned very efficiently now (using a polynomial algorithm).
- 2. A wide variety of combinatorial classes can be reduced to unambiguous context-free grammar
- 3. To incorporate new exotic classes, convex optimisation and combinatorics should work together
Thank you for your attention