
Seminar at Caen 26/02/2019 1

Boltzmann samplers and beyond

Keywords: analytic combinatorics, trees, dynamic program-
ming, recursive method, Boltzmann sampler, uniform distribu-
tion

1 Warm-up: binary trees and Catalan numbers

Let us gently start by recalling

∙ What is a rooted tree and a binary rooted tree?

∙ What is a generating function?

∙ How many binary trees does there exist with given number of nodes?
(only on the level of recurrences, not the exact number)

From graph theory, we are familiar with the concept of tree, which is a
graph without cycles. The tree is called rooted if one of the vertices is
distinguished. This distinguished vertex is called a root.
The height of a node is the distance from this node to the root. If two
nodes are adjacent then the node with greater height is called a child, and
the other one is called a parent. Binary trees are those trees whose nodes
have either zero or two children.
Then, binary trees admit a kind of recursive definition which defines binary
trees in terms of themselves:

Definition 1. Every binary rooted tree is either a leaf or a root with two
binary trees attached.

This recursive-type definition can be given as well to ordinary rooted trees,
with arbitrary number of children:

Definition 2. A rooted tree is a root and a sequence (of possibly zero
length) of rooted trees.

Binary trees can be also represented by an unambiguous context-free gram-
mar (the same as given for correct bracket expressions):

𝐵 = 𝒵 | (𝐵)𝒵(𝐵)

Sergey Dovgal

Seminar at Caen 26/02/2019 2

𝑇 =

∙

𝑇 𝑇· · ·

Figure 1: Combinatorial definition of a rooted tree

The symbol 𝒵 is a terminal symbol of this grammar (which corresponds to
a leaf vertex), and the brackets «(», «)» are auxilliary symbols. Thus, this
grammar describes the set of words

{𝒵, (𝒵)𝒵(𝒵), ((𝒵)𝒵(𝒵))𝒵(𝒵), (𝒵)𝒵((𝒵)𝒵(𝒵)), . . .}

We shall say that a tree has size 𝑛 if it has 𝑛 vertices. In the sequel, we will
be interested in the problem of random generation of combinatorial objects
like binary trees (maybe a bit more complicated than just binary trees).
If we fix the size of a tree 𝑛, the problem is to pick uniformly at random
among the trees of given size.

Problem 1. Give an algorithm which generates uniformly at random bi-
nary trees with 𝑛 nodes.

In the long run, the problem of random generation will become a bit more
general than this, but we need to start with a simple example. Essentially,
we consider two algorithms which solve this problem.

1.1 The recursive method

The recursive method is a kind of algorithm which uses dynamic program-
ming, first described in [NW78]. In order to generate a tree of size 𝑛, we
choose a number 𝑘 ∈ {0, . . . , 𝑛} at random, and generate left subtree with 𝑘
nodes and right subtree with 𝑛−𝑘−1 nodes. But what should be the distri-
bution of random variable 𝑘 in order to obtain the resulting tree uniformly
at random?
In order to give the answer, let’s turn to combinatorics. Suppose that the
number of binary trees with 𝑘 nodes is equal to 𝑇𝑘 and has been precom-
puted for all 𝑘 ≤ 𝑛. How to compute the number of trees of size 𝑛 if all the
numbers 𝑇𝑘 are known for 𝑘 < 𝑛? After summing over all possible 𝑘, we

Sergey Dovgal

Seminar at Caen 26/02/2019 3

obtain:

𝑇𝑛 =

𝑛∑︁
𝑘=1

𝑇𝑘𝑇𝑛−𝑘−1 .

The probability of having 𝑘 vertices in the left subtree should be propor-
tional to 𝑘-th summand in the previous sum:

P(𝑘 nodes in the left subtree) =
𝑇𝑘𝑇𝑛−𝑘−1

𝑇𝑛

Once all the values 𝑇1, . . . , 𝑇𝑛−1 are precomputed, it is possible to recur-
sively generate each required probability distribution on the number of
nodes in the left subtree. The tree is generated from the root until each
«subprocess» becomes a leaf node.

Algorithm 1: Recursive algorithm for binary trees
Data: Integer number 𝑛
Result: Random tree of size 𝑛
begin

Precompute array (𝑇𝑘)
𝑛
𝑘=1 using the reccurence

𝑇𝑛 =

𝑛∑︁
𝑘=1

𝑇𝑘𝑇𝑛−𝑘−1 , 𝑇1 = 1

For each 𝑛, precompute the probability distribution 𝒫𝑛:

𝑝
(𝑛)
𝑘 =

𝑇𝑘𝑇𝑛−𝑘−1

𝑇𝑛

Function Generate(𝑛):
if 𝑛 = 1 then

return 𝒵 ;

Sample random 𝑘 from the probability distribution 𝒫𝑛 ;
𝐿 := Generate(𝑘) ;
𝑅 := Generate(𝑛− 𝑘 − 1) ;
return (𝐿)𝒵(𝑅);

Here are several trees of size 9 generated by Algorithm 1:

Sergey Dovgal

Seminar at Caen 26/02/2019 4

(((Z)Z(Z))Z(Z))Z((Z)Z(Z))
(Z)Z((((Z)Z(Z))Z(Z))Z(Z))
(Z)Z(((Z)Z(Z))Z((Z)Z(Z)))
(((Z)Z((Z)Z(Z)))Z(Z))Z(Z)
(Z)Z(((Z)Z((Z)Z(Z)))Z(Z))

Remark 1. We use quadratic algorithm to precompute the values 𝑇𝑘. In
fact, this can be done in linear time using a recursive formula (exercise)

𝑇2𝑛+1 =
2(2𝑛− 1)

𝑛+ 1
𝑇2𝑛−1

Moreover, for any combinatorial system corresponding to unambiguous
context-free grammar this can be done in linear arithmetic time (using
so-called holonomic specifications). Keywords: “every algebraic func-
tion is holonomic”.

1.2 Boltzmann sampler

Arnold’s principle. Every principle doesn’t carry the name of its inven-
tor. Arnold’s principle is applicable to itself.
According to Arnold’s principle, Boltzmann sampler was not invented by
Boltzmann. It was introduced in the paper of Duchon, Flajolet, Louchard
and Schaeffer.
In contrast to the previous sampler, Boltzmann sampler doesn’t return
objects of fixed size, the size is a random variable. Hovewer, the sampler
has an additional parameter as an input, and this parameter can be changed
to give different expected values of size.
At this point we need to define generating function of binary trees. Gen-
erating function is a formal power series that contains information about
all the coefficients 𝑇𝑘 in the following way:

𝑇 (𝑧) := 𝑇0 + 𝑇1𝑧 + 𝑇2𝑧
2 + . . .

This function can be even computed at some points 𝑧, for example (exer-
cise!):

𝑇 (12) = 1.

Pure magic and beauty.
There is a famous formula for Catalan numbers.

𝑇 (𝑧) =
1−

√
1− 4𝑧2

2𝑧

Sergey Dovgal

Seminar at Caen 26/02/2019 5

which can be proved by solving quadratic equation with respect to 𝑇

𝑇 (𝑧) = 𝑧 + 𝑧𝑇 2(𝑧)

which, in its turn, follows from the reccurence relation on its coefficients

𝑇𝑛 =

𝑛−1∑︁
𝑘=1

𝑇𝑘𝑇𝑛−𝑘−1.

Algorithm 2: Boltzmann sampler algorithm for binary trees
Data: Integer number 𝑛, real value 𝑧
Result: Random tree of variable size, target expected size 𝑛
begin

Function Generate(𝑛):
Carefully look at the equation

𝑇 (𝑧) = 𝑧 + 𝑧𝑇 2(𝑧)

Generate Bernoulli random variable 𝑋

P(𝑋 = 0) =
𝑧

𝑧 + 𝑧𝑇 2(𝑧)

P(𝑋 = 1) =
𝑧𝑇 2(𝑧)

𝑧 + 𝑧𝑇 2(𝑧)

if 𝑋 = 0 then
return 𝒵;

if 𝑋 = 1 then
𝐿 := Generate(𝑧);
𝑅 := Generate(𝑧);
return (𝐿)𝒵(𝑅);

Let us take a look at the distribution of the size of generated tree

Sergey Dovgal

Seminar at Caen 26/02/2019 6

Here are several trees generated by Algorithm 2 for different values of 𝑧.
For 𝑧 = 0.45:

Z
Z
(Z)Z(((Z)Z(Z))Z(Z))
(Z)Z(Z)
Z
Z
Z
Z
(Z)Z(Z)
((Z)Z(Z))Z(Z)

For 𝑧 = 0.49:

Z
((Z)Z(Z))Z((((Z)Z((Z)Z(((Z)Z(Z))Z(Z))))Z(Z))Z(Z))
Z
Z
Z
(Z)Z((Z)Z(Z))
Z

For 𝑧 = 0.5:

Z
Z
(Z)Z(Z)
Z

Sergey Dovgal

Seminar at Caen 26/02/2019 7

(Z)Z(Z)
(((((Z)Z(Z))Z((Z)Z(Z)))Z(((Z)Z(Z))Z(((Z)Z((Z)Z(((Z)Z((((Z)Z(((((Z)
Z(Z))Z(Z))Z((Z)Z(((((Z)Z(Z))Z(Z))Z((Z)Z(Z)))Z(Z))))Z(Z)))Z(Z))Z((Z
)Z(((Z)Z((Z)Z((Z)Z((((((((Z)Z((((Z)Z(Z))Z(Z))Z(Z)))Z((((((Z)Z(Z))Z
(Z))Z((Z)Z(Z)))Z(Z))Z(Z)))Z(Z))Z(Z))Z(((((Z)Z(Z))Z(Z))Z((Z)Z(Z)))Z
(Z)))Z(((Z)Z(Z))Z(Z)))Z(Z)))))Z((Z)Z(((Z)Z(((Z)Z(Z))Z((Z)Z(Z))))Z(
(Z)Z(Z))))))))Z((((Z)Z((Z)Z(Z)))Z(Z))Z(Z)))))Z((Z)Z(Z)))))Z((Z)Z((
(Z)Z((Z)Z((((((Z)Z(Z))Z(Z))Z((Z)Z(((((Z)Z(((Z)Z((Z)Z((Z)Z((((((Z)Z
(Z))Z(((Z)Z((Z)Z(Z)))Z(Z)))Z(((Z)Z((Z)Z(Z)))Z((((((Z)Z(Z))Z(Z))Z((
Z)Z(Z)))Z(Z))Z((Z)Z(Z)))))Z((Z)Z(Z)))Z(((((Z)Z(Z))Z(Z))Z(Z))Z(Z)))
)))Z(Z)))Z((((Z)Z(Z))Z(Z))Z(((Z)Z(Z))Z(Z))))Z(Z))Z((((Z)Z(Z))Z(Z))
Z((Z)Z(((((Z)Z(Z))Z((Z)Z(Z)))Z(Z))Z(Z)))))))Z((((Z)Z(Z))Z(Z))Z(Z))
)Z(((Z)Z(Z))Z((Z)Z(((Z)Z(Z))Z(Z)))))))Z((Z)Z(Z)))))Z(((((((Z)Z(Z))
Z((Z)Z(Z)))Z(Z))Z(Z))Z(((Z)Z(Z))Z(Z)))Z((((Z)Z(Z))Z((Z)Z(((Z)Z((Z)
Z(((((((Z)Z((Z)Z((Z)Z(Z))))Z(((Z)Z(((Z)Z(((Z)Z(Z))Z((((Z)Z((Z)Z(Z)
))Z(Z))Z(Z))))Z(Z)))Z(Z)))Z(Z))Z(Z))Z(Z))Z((((((((Z)Z((((Z)Z(Z))Z(
Z))Z(((((Z)Z((((((Z)Z((Z)Z((((Z)Z((((Z)Z(Z))Z(Z))Z(Z)))Z(Z))Z(((Z)
Z((Z)Z(Z)))Z(((Z)Z(Z))Z(Z))))))Z(((((Z)Z(Z))Z(((Z)Z(Z))Z(Z)))Z((Z)
Z((((Z)Z(Z))Z(Z))Z((Z)Z((Z)Z(((Z)Z(Z))Z(Z)))))))Z(Z)))Z((((Z)Z(Z))
Z(((Z)Z(Z))Z(Z)))Z(Z)))Z(Z))Z(Z)))Z(Z))Z(Z))Z(Z))))Z(Z))Z(Z))Z(Z))
Z(Z))Z(Z))Z((Z)Z((((Z)Z(Z))Z(((Z)Z((Z)Z(Z)))Z((((Z)Z(Z))Z(Z))Z(Z))
))Z((Z)Z(Z))))))))Z((((((Z)Z((((Z)Z((Z)Z((Z)Z(Z))))Z(Z))Z((Z)Z((((
Z)Z(((Z)Z((Z)Z(Z)))Z((Z)Z(Z))))Z((Z)Z(Z)))Z(Z)))))Z((Z)Z(Z)))Z((((
((Z)Z(Z))Z((Z)Z(((Z)Z(Z))Z((Z)Z((((Z)Z(Z))Z(Z))Z(Z))))))Z(Z))Z(Z))
Z((Z)Z(Z))))Z(Z))Z(Z)))))Z(((Z)Z(Z))Z((Z)Z(Z)))))

The strange thing happening is that the size distribution has a heavy tail,
so sometimes we obtain objects of very large size. The size of the generated
object is not well concentrated.
Exercise 1. Show that conditioned on size, the distribution of the objects inside a class
is uniform.

Exercise 2. Show that the expected size of the generated object from a Boltzmann

sampler is equal to 𝑧
𝑇 ′(𝑧)

𝑇 (𝑧)
. Show that this function is non-decreasing in argument 𝑧.

Hint. Show that under ordinary Boltzmann model, the probability generating function
of the size of generated objects is∑︁

𝑛

P𝑥(𝑁 = 𝑛)𝑧𝑛 =
𝐹 (𝑥𝑧)

𝐹 (𝑥)
.

Show the monotonicity by proving the identity

𝑥
𝑑

𝑑𝑥
E𝑥(𝑁) = V𝑥(𝑁).

Sergey Dovgal

Seminar at Caen 26/02/2019 8

Exercise 3. Show that the variance of the size of the generated binary tree is infinite.

1.3 Generating rooted trees

After having generated binary trees, we proceed to the trees without fixed
number of children, i.e. rooted plane trees. Let us recall the combinatorial
definition of a rooted plane tree:

Definition 3. A rooted plane tree is a root and a sequence (possibly
empty) of sub-trees, each is also a rooted plane tree.

Suppose that 𝑇 (𝑧) = 𝑇0+𝑇1𝑧+𝑇2𝑧
2+ . . . is a generating function for trees,

i.e. 𝑇𝑛 is equal to the number of trees of size 𝑛. Then, this generating
function satisfies functional equation

𝑇 (𝑧) = 𝑧 · (1 + 𝑇 (𝑧) + 𝑇 (𝑧)2 + . . .) = 𝑧 · 1

1− 𝑇 (𝑧)

There are two different ways to sample random trees using Boltzmann sam-
pler. These two ways differ in computational complexity (more precisely, in
the number of random bits required), but result in the same distribution.
One approach is to treat the infinite sum analogous to that of binary trees,
and sample a random variable 𝑋 with distribution

P(𝑋 = 𝑘) =
𝑇 (𝑧)𝑘

1 + 𝑇 (𝑧) + 𝑇 2(𝑧) + . . .

This random variable is responsible for the number of children of the root
node. The generation proceeds recursively into each of these 𝑘 children
then. This can be viewed in Algorithm 3.
A different option would be to define the sequence of trees as a separate
combinatorial class recursively:

𝑆 :=
1

1− 𝑇 (𝑧)
, 𝑆(𝑧) = 1 + 𝑆(𝑧) · 𝑇 (𝑧)

and define a Boltzmann generator separately for 𝑆 and for 𝑇 recursively in
terms of each other.

Exercise 4. Extend the Boltzmann sampling framework onto labelled structures, i.e.
those having exponential generating functions as describing them. Show that the SET
and CYC operators can be constructed as Poisson and another specific discrete distri-

bution with p.g.f. proportional to
𝐶𝑘

𝑘
, respectively.

Sergey Dovgal

Seminar at Caen 26/02/2019 9

Algorithm 3: Boltzmann sampler for rooted plane trees
Data: Integer number 𝑛, real value 𝑧
Result: Random tree of variable size, target expected size 𝑛
begin

Function Generate(𝑛):
Carefully look at the equation

𝑇 (𝑧) = 𝑧 · (1 + 𝑇 (𝑧) + 𝑇 (𝑧)2 + . . .)

Generate random variable 𝑋 from geometric distribution
with parameter 𝑇 (𝑧):

P(𝑋 = 𝑘) = 𝑇 (𝑧)𝑘(1− 𝑇 (𝑧))

for i = 1 to k do
𝑇𝑖 := Generate(z) ;

return 𝒵(𝑇1𝑇2 . . . 𝑇𝑘) ;

2 Different combinatorial classes

According to grammar types, so-defined combinatorial classes that we con-
sider (binary trees) can be replaced by more sophisticated objects, accord-
ing to the nature of its generating function. It may satisfy a system of
equations, which themselves can be of different complexity, like rational,
algebraic and differential systems.
Also, in the previous part we have tuned the expected size of the object,
but we can have control over some additional parameters like number of
leaves of the generated tree.

2.1 Tree with given number of leaves
Exercise 5. Show that the expected number of leaves in a random tree is 𝑛/8.

Exercise 6. Show that the expected number of leaves is equal to

E𝑧,𝑢#of leaves = 𝑢
𝜕𝑢𝐹 (𝑧, 𝑢)

𝐹 (𝑧, 𝑢)

Sergey Dovgal

Seminar at Caen 26/02/2019 10

Functional equation Exact sampling In expectation
Rational 𝑂(𝑛) [BG12] 𝑂(𝑛)
Algebraic 𝑂(𝑛2) [DZ99] 𝑂(𝑛)
Unlabeled tree-like 𝑂(𝑛2) 𝑂(𝑛)
First-order differential 𝑂(𝑛)
Second-order differential 𝑂(𝑛)
Dirichlet samplers 𝑂(𝑛)
Non-analytic ODE doesn’t exist
FE with substitutions doesn’t exist
Multiparametric algebraic 𝑂*(𝑛2) 𝑂*(𝑛)

Table 1: Possible situations for Boltzmann sampling

𝑇
= 𝑢 +

∙

𝑇 𝑇· · ·⏟ ⏞
≥1

Figure 2: Trees with labeled leaves.

2.2 Multiparametric sampling
Exercise 7. Exact multiparametric sampling from algebraic grammars is NP-complete.

Hint. Consider an NP-complete problem 1-in-3 SAT which is a version of 3-SAT with a
requirement that in each clause, exactly one of the variables is satisfied. Show that given
an instance of 1-in-3 SAT problem, it is possible to construct a corresponding algebraic
grammar, such that it is possible to sample at least one object from this grammar if and
only if the formula is satisfiable.

Exercise 8. Exact multiparametric sampling from algebraic grammars is #P-complete.

However, if the goal is to have the expected values of given parameters, it
is possible to have a polynomial algorithm. In our recent paper [BBD18],
we construct a polynomial-time oracle for a problem of multidimensional
tuning. The previous algorithm [BP10] only guaranteed convergence if the
starting vector was close enough to the target solution.

Sergey Dovgal

Seminar at Caen 26/02/2019 11

2.3 Rational and algebraic specifications, Pólya
structures

The basic case of combinatorial families whose generating functions satisfy
the functional equation

𝐹 = Φ(𝐹 , 𝑧)

is covered in the original paper [DFLS04] and the corresponding oracle
is constructed in [PSS12] (in a uniparametric setting). More on Pólya
structures (also known as unlabelled structures) can be found in [FFP07,
BFKV11].

2.4 First-order and second-order differential
specifications

The cases when the differential function is analytic and satisfies a first-order
differential equation (oracle provided) is settled in [BRS12]. This work was
continued to obtain second-order differential samplers [BDF+16], with some
applications to concurrent processes.

2.5 Differential equations with zero radius of
convergence and functional equations with

substitutions

Some differential equations have solutions which are not analytic at zero.
The simplest possible example is the functional equation

𝑧2𝑓 ′(𝑧) + (𝑧 − 1)𝑓(𝑧) = 0

which gives a solution
𝑓(𝑧) =

∑︁
𝑛≥0

𝑛!𝑧𝑛.

For such examples it is not yet known how to construct Boltzmann-style
samplers. Also certain equations have much more complicated structure,
for example the generating function for lambda terms in unary nota-
tion [BGGJ13]:

𝐿(𝑧) = 𝑧𝑀(𝑧) + 𝑧𝐿(𝑧)2 + 𝑧𝐿

(︂
𝑧

1− 2𝑧𝑀(𝑧)

)︂
where 𝑀(𝑧) is the generating function for Motzkin numbers.

Sergey Dovgal

Seminar at Caen 26/02/2019 12

It is remarkable that for the case of Motzkin trees it turned out to be possi-
ble to interpret combinatorially the corresponding holonomic specification
to create a linear-time sampling algorithm [BBJ13]. The corresponding
generating function is analytic at zero.

2.6 Dirichlet samplers

Boltzmann samplers for Dirichlet generating functions are discussed
in [Bod10].

References
[BBD18] Maciej Bendkowski, Olivier Bodini, and Sergey Dovgal. Polynomial tuning of

multiparametric combinatorial samplers. In 2018 Proceedings of the Fifteenth
Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pages
92–106. SIAM, 2018.

[BBJ13] Axel Bacher, Olivier Bodini, and Alice Jacquot. Exact-size sampling for
motzkin trees in linear time via boltzmann samplers and holonomic specifi-
cation. In Proceedings of the Meeting on Analytic Algorithmics and Combi-
natorics, pages 52–61, 2013.

[BDF+16] Olivier Bodini, Matthieu Dien, Xavier Fontaine, Antoine Genitrini, and
Hsien-Kuei Hwang. Increasing diamonds. In Latin American Symposium
on Theoretical Informatics, pages 207–219, 2016.

[BFKV11] Manuel Bodirsky, Éric Fusy, Mihyun Kang, and Stefan Vigerske. Boltzmann
samplers, pólya theory, and cycle pointing. SIAM J. Comp., 40(3):721–769,
2011.

[BG12] Olivier Bernardi and Omer Giménez. A linear algorithm for the random
sampling from regular languages. Algorithmica, 62(1):130–145, 2012.

[BGGJ13] Olivier Bodini, Danièle Gardy, Bernhard Gittenberger, and Alice
Jacquot. Enumeration of generalized 𝑏𝑐𝑖 lambda-terms. arXiv preprint
arXiv:1305.0640, 2013.

[Bod10] Olivier Bodini. Autour de la génération aléatoire sous modèle de Boltzmann
[On random generation under Boltzmann models]. habilitation, Université
Pierre et Marie Curie, Paris, 2010.

[BP10] Olivier Bodini and Yann Ponty. Multi-dimensional boltzmann sampling of
context-free languages. In 21st International Meeting on Probabilistic, Com-
binatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA’10),
volume AM, 2010.

[BRS12] Olivier Bodini, Olivier Roussel, and Michèle Soria. Boltzmann samplers for
first-order differential specifications. Disc. App. Math., 160(18):2563–2572,
2012.

[DFLS04] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer.
Boltzmann samplers for the random generation of combinatorial structures.
Combinatorics, Probability & Computing, 13(4-5):577–625, 2004.

Sergey Dovgal

Seminar at Caen 26/02/2019 13

[DZ99] Alain Denise and Paul Zimmermann. Uniform random generation of de-
composable structures using floating-point arithmetic. Theoretical Computer
Science, 218(2):233–248, 1999.

[FFP07] Philippe Flajolet, Éric Fusy, and Carine Pivoteau. Boltzmann sampling of
unlabelled structures. In Proceedings of the Meeting on Analytic Algorithmics
and Combinatorics, pages 201–211, 2007.

[NW78] Albert Nijenhuis and Herbert S. Wilf. Combinatorial Algorithms. Academic
Press, 2 edition, 1978.

[PSS12] Carine Pivoteau, Bruno Salvy, and Michèle Soria. Algorithms for combinato-
rial structures: well-founded systems and newton iterations. J. Comb. Th.,
119(8):1711–1773, 2012.

Sergey Dovgal

	Warm-up: binary trees and Catalan numbers
	The recursive method
	Boltzmann sampler
	Generating rooted trees

	Different combinatorial classes
	Tree with given number of leaves
	Multiparametric sampling
	Rational and algebraic specifications, Pólya structures
	First-order and second-order differential specifications
	Differential equations with zero radius of convergence and functional equations with substitutions
	Dirichlet samplers

