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1 Cauchy form
Ordinary differential equations in Cauchy form is a very specific formulation of an ordinary differential
equation. It is written as follows:

Differential equation in Cauchy form.{
y′(t) = f(y(t), t), t ∈ [a, b];

y(a) = y0
(1)

Example 1. Consider the following differential equation:{
y′(t) = −ty2(t), t ∈ [0, 1];

y(0) = 2
(2)

Here, in order to specify the differential equation explicitly in Cauchy form (1), we should specify

(i) The bivariate function f(y, t) for (1);

(ii) The target interval [a, b];

(iii) The initial value y0.

In particular, here

(i) f(y, t) = −t · y2;

(ii) a = 0, b = 1;

(iii) y0 = 2.

Remark 1. Note that y and t are independent arguments of f(y, t) in the sense that you can substiute
concrete values, for example y = 2, t = 1, and evaluate your function at these values:

f(2, 1) = −4.

Example 2. {
y′(t) = 1 + y(t), t ∈ [0, 1],

y(0) = 0
(3)

Again, we need to provide f(y, t), initial conditions a, y0, and the right border b of the interval. They are
given by f(y, t) = 1 + y, a = 0, y0 = 0, and b = 1.

1



Theorem 1 (Cauchy–Lipschitz). Supposons que la fonction f(t, y) est

(i) Continue par rapport à ses deux variables;

(ii) Lipschitzienne par rapport à y de rapport L qualconque

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|

pour tout t, y1, y2.

Dans ce cas le problème de Cauchy admet une solution unique y(t) et cette
solution a deux derivées continues.

Example 3. It is not always so easy to write a differential equation in Cauchy form. Imagine the following
strange example:

ef
′(t) + f(t) · f ′(t) = tf(t)

Here, we can’t express f ′(t) as a function explicitly depending on f(t) and t, as this dependence would not
be explicit.

2 Family of Euler’s methods
In the course there were described three different Euler methods, namely, explicit, implicit and modified.
Among theree of them, implicit is the most difficult to implement, because it requires solving an additional
supplementary equation. The fourth method, with a different name, but related to the aforementioned Euler
methods, is Crank–Nicolson’s method, which is a mixture of implicit and explicit Euler’s methods.

Explicit Euler yk+1 = yk + hf(tk, yk)

Implicit Euler yk+1 = yk + hf(tk+1, yk+1)

Modified Euler
yk+1 = yk + hf(tk+1/2, yk+1/2)
yk+1/2 = yk + h

2 f(tk, yk)

Crank–Nicolson yk+1 = yk + h
f(tk, yk) + f(tk+1, yk+1)

2

Table 1: Family of four iterative methods

The target interval [a, b] is divided into N parts, and the sequence tk is assigned as

tk = a+ hk = a+ k
b− a

N
,

so that t0 = a and tN = b. The iteration starts recursively with y0 given, and then we compute all further
y1, y2, . . . until yN .
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Algorithm 1 provides pseudocode to Euler’s explicit method.
Algorithm 1: Explicit Euler’s method
Data: number N of parts in which we divide the interval [a, b]
Result: Sequence of values u0, u1, . . . , un

Function Euler(N):

h :=
b− a

N
;

for k = 1..N do
tk = a+ hk ;
uk+1 := uk + hf(tk, uk) ;

return [u0, u1, . . . , uN ] ;

3 Solutions to exercises
Exercise 1. Soit y(t) une fonction à valeurs positives polution de :{

y′(t) + ty2(t) = 0, t > 0

y(0) = 2 .

(i) Écrire ce problème sous la forme d’un problème de Cauchy;

(ii) Écrire en pseudo-code la méthode d’Euler explicite pour la résolution de ce problème pour un certain
pas de discrétisation h;

(iii) Quelles sont les équations à résoudre lorsqu’on applique le schema d’Euler implicite pour résoudre ce
problème ?

Solution. We start by writing the problem in Cauchy form. This is done by putting the differential equation
into the form y′(t) = f(t, y): {

y′(t) = −ty2(t), t > 0

y(0) = 2 .

More specifically, we have f(t, y) = −ty2. One thing is problematic here, namely, a usual Cauchy problem (1)
is defined on a bounded interval t ∈ [a, b], but here we have an unbounded t ∈ (0,+∞). So, we need to
choose in an arbitrary manner the right tail T of the interval:{

y′(t) = −ty2(t), t ∈ [0, T ]

y(0) = 2 .

By substituting concrete values and functions into Algorithm 1, we obtain the pseudocode for Euler
iteration for this particular exercise.
Algorithm 2: Explicit Euler’s method for exercise 1
Data: number N of parts in which we divide the interval [0, T ]
Result: Sequence of values u0, u1, . . . , un

Function Euler(N):

h :=
T

N
;

for k = 0 .. N − 1 do
tk = hk ;
uk+1 := uk − htku

2
k ;

return [u0, u1, . . . , uN ] ;
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Now, let us switch to the implicit Euler’s iteration. The recurrence of this iteration takes the form

uk+1 = uk − htk+1u
2
k+1

which is a quadratic equation with respect to uk+1. We have two alternative solutions:

u′
k+1 =

−1 +
√

1 + 4ukhtk+1

2htk+1
, u′′

k+1 =
−1−

√
1 + 4ukhtk+1

2htk+1
.

Normally, the presence of these two alternatives doesn’t directly allow us to pick one variant for the implicit
method. This gives rise to the two possibilities. However, heuristically, we can choose the branch, whose
value uk+1 is closer to the previous obtained value uk. So, among the two branches we will choose the
solution with the positive sign, i.e.

uk+1 =
−1 +

√
1 + 4ukhtk+1

2htk+1
.

See the full description in Algorithm 3.
Algorithm 3: Implicit Euler’s method for exercise 1
Data: number N of parts in which we divide the interval [0, T ]
Result: Sequence of values u0, u1, . . . , un

Function Euler(N):

h :=
T

N
;

for k = 0 .. N − 1 do
tk = hk ;

uk+1 :=
−1 +

√
1 + 4ukhtk+1

2htk+1
;

return [u0, u1, . . . , uN ] ;

Finally, we may be curious to find out the explicit form of the solution. Unfortunately, if we try to apply
Cauchy–Lipshitz theorem to try to prove the uniqueness of the solution with given initial conditions, we fail.
Also, the presence of two solutions in the implicit method indicates that something unusual is hapenning.
In fact, it may happen on practice that a differential equation in Cauchy form may have multiple solutions,
and the number of the solutions may also depend on the initial conditions.

In the case of differential equation y′(t) = −ty2(t) we can apply a “physical” heuristics, with no guarantee
whatsoever.

Let us start with the differential equation mentioned in the problem statement.

dy

dt
= −ty2

We imagine that
dy

dt
is actually not a derivative, but a fraction. This allows us to multiply both sides by dt:

dy = −ty2dt.

Next, we separate the variables y and t, so that one side of the equation contains only y and dy, and the
second side contains only t and dt:

dy

y2
= −tdt

Taking the indefinite integral, we get

−1

y
= − t2

2
− C
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which implies

y(t) =
1

t2

2 + C
.

It is possible to verify that there exists a unique C such that the abovementioned function satisfies the given
functional equation (C = 1/2). It is remarkable that the described technique allows to find a solution, but
doesn’t give a guarantee that this is the only solution existing.

Exercise 2. On considère le problème de Cauchy suivant :{
y′(t) = 1 + y(t), t ∈ [0, 1]

y(0) = 0.

(i) Montrer que ce problème admet une solution unique. Donner l’expression explicite de cette solution.

(ii) Calculer des valeurs approchées de y(0.1), y(0.2), . . . , y(1) en utilisant la méthode d’Euler explicite avec
h = 0.1.

(iii) Tracer la solution exacte et les solutions approchées sur le même graphique.

(iv) Calculer des valeurs approchées de y(0.1), y(0.2), . . . , y(1) en utilisant la méthode d’Euler modifiée avec
h = 0.1.

(v) Comparer les erreurs faites avec la méthods d’Euler explicite et avec la méthode d’Euler modifiée.

Solution. In order to find the exact solution, we use the same heuristics as in the previous exercise. We
represent the derivative as a fraction

dy

dt
= 1 + y

After, multiply by dt and divide by 1 + y:
dy

1 + y
= dt

By taking the integral on both sides we obtain a solution up to a constant:

ln(1 + y) = t+ C

so that
y(t) = et+C − 1.

The constant C is discovered from the initial condition y(0) = 0 and is equal to zero: C = 0. Finally,
y(t) = et − 1.

This (heuristic) solution is perfectly fitting the initial differential equation and the initial conditions, but
we also need to prove the uniqueness of this solution, using Cauchy–Lipshitz theorem.

In the Cauchy form (1), the function f(t, y) of the current exercise has the form

f(t, y) = 1 + y

and is continuous as a sum of two continuous functions. This function is Lipsthitz with constant 1 with
respect to its second argument:

|f(t, y1)− f(t, y2)| = 1 · |y1 − y2|.

This implies the uniqueness of the solution.
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Next, we consider explicit and modified Euler’s methods.
Algorithm 4: Explicit Euler’s method for exercise 2
Data: number N of parts in which we divide the interval [0, 1]
Result: Sequence of values u0, u1, . . . , un

Function Euler(N):

h :=
1

N
;

for k = 0 .. N − 1 do
tk = hk ;
uk+1 := uk + h(1 + uk) ;

return [u0, u1, . . . , uN ] ;

Algorithm 5: Modified Euler’s method for exercise 2
Data: number N of parts in which we divide the interval [0, 1]
Result: Sequence of values u0, u1, . . . , un

Function Euler(N):

h :=
1

N
;

for k = 0 .. N − 1 do
tk = hk ;
vk := uk + h/2(1 + uk) ;
uk+1 := uk + h(1 + vk) ;

return [u0, u1, . . . , uN ] ;

Applying these algorithms with N = 10 and h = 0.1, we obtain the approximate values.
Attention: I made a computational error during the course and when I substituted vk into the expression

for uk+1, after expanding the brackets, I obtained a wrong expression. Please be careful with computations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Exact 0.0 0.105 0.221 0.349 0.491 0.648 0.822 1.013 1.225 1.459 1.718

Modified 0.0 0.105 0.221 0.349 0.490 0.647 0.820 1.011 1.222 1.456 1.714
Explicit 0.0 0.1 0.210 0.331 0.464 0.610 0.771 0.948 1.143 1.357 1.593

Table 2: Comparing different methods

After finishing this table we see that version modified has much better performance compared to explicit
iteration. We reinterpret this result on the plot.
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In addition, we can compare the errors made by explicit and modified method.

6



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Modified 0.0 -0.0001 -0.0003 -0.0006 -0.0009 -0.0012 -0.0016 -0.0021 -0.0027 -0.0034 -0.0042
Explicit 0.0 -0.005 -0.011 -0.018 -0.027 -0.038 -0.050 -0.065 -0.081 -0.101 -0.124

Table 3: Comparing the errors

Exercise 6. On considère le problème suivant :{
y′(t)− cos(t)y(t) = 0, t ∈ [0, 1]

y(0) = 1 .

(i) Écrire ce problème sous la forme d’un problème de Cauchy. Donner, en particulier, la fonction f(t, y),
et les valeurs de t0 et de y0;

(ii) Montrer que ce problème admet une solution unique. Donner l’expression explicite de cette solution,
si possible.

(iii) Donner l’équation d’itération de la méthode d’Euler explicite, en général et dans le cas particulier de
ce problème de Cauchy.

(iv) Donner l’équation d’itération de la méthode d’Euler implicite, en général et dans le cas particulier de
ce problème de Cauchy. Si cest possible, donnez l’expression de ui+1 en fonction de h, ui et ti+1.

(v) Appliquer la méthode d’Euler implicite avec n = 2 au problème ci-dessus.

(vi) Écrivez une fonction Matlab (sur papier) dont les arguments sont un nombre u0 et un nombre entier
N. Cette fonction devra calculer et afficher les nombres u1, u2, . . . , uN qui approchent la fonction y par
la méthode d’Euler implicite.

Solution. I will skip certain aspects to make the solution as short as possible.
First, we try to find (heuristially) the explicit solution.

dy

dt
= y cos t

After variable splitting
dy

y
= cos tdt

Integration yields
ln y = sin t+ C

So that (combined with the initial conditions y(0) = 1)

y = esin t.

In order to prove the uniqueness of the solution, we use again theorem of Cauchy–Lipschitz. In the Cauchy
form (1), the function f(t, y) takes form

f(t, y) = y · cos(t)

This function is Lipschitz-continuous with a constant 1 with respect to its second variable:

|f(t, y1)− f(t, y2)| = | cos t| · |y1 − y2| ≤ 1 · |y1 − y2|.

Therefore, the solution is unique.
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Let us focus on the implicit method first. The equation for the implicit method is

uk+1 = uk + huk+1 cos tk+1,

which is a linear equation with respect uk+1 and therefore, can be explicitly solved:

uk+1 =
uk

1− h cos tk+1
,

if h cos tk+1 6= 1.
Therefore, we can provide algorithms for both explicit and implicit Euler’s method for this particular

problem.
Algorithm 6: Explicit Euler’s method for exercise 6
Data: number N of parts in which we divide the interval [0, 1]
Result: Sequence of values u0, u1, . . . , un

Function Euler(N):

h :=
1

N
;

for k = 0 .. N − 1 do
tk = hk ;
uk+1 := uk(1 + cos tk) ;

return [u0, u1, . . . , uN ] ;

Algorithm 7: Implicit Euler’s method for exercise 6
Data: number N of parts in which we divide the interval [0, 1]
Result: Sequence of values u0, u1, . . . , un

Function Euler(N):

h :=
1

N
;

for k = 0 .. N − 1 do
tk = hk ;
uk+1 :=

uk

1− h cos tk+1
;

return [u0, u1, . . . , uN ] ;

I leave the numerical part and the Matlab code as an exercise (I have already presented the pseudocode
for all of the algorithms, so the Matlab implementation is straightforward modulo syntax).

Remark 2. With some experience, one can notice that the expressions 1+cos tk and
1

1− cos tk+1
correspond

to a very similar entity, when tk is small. This happens because

1

1− x
= 1 + x+ x2 + x3 + . . . ≈ 1 + x

when x is close to zero.

4 Questions and answers
Question 1. Can we say something about the convergence speed of the Euler methods? Is it linear or
quadratic?
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Answer. In this course, the notion of the speed of convergence for Euler methods is not discussed. However,
the theoretical guarantee (which more or less meets practice) roughly corresponds to something much worse
than linear speed. The error at each step is or order O(h) for implicit and explicit methods, and of smaller
order (say O(h2)) for more precise methods, and the best we can obtain is something like O(h4) or O(h5)
for a family of Runge–Kutta methods. This is beyond the scope of the first semester. Even for the fastest
method, the error accumulates over the segments, so if you want to get higher precision, you need to have
as many intervals as possible.

Question 2. How to choose the branch for implicit method if there are several solutions?

Answer. If you have several solutions, by default you are not able to choose the correct branch without
additional assumptions (and more advanced theoretical knowledge). At this stage it is proposed to you that
you (heuristically) choose the branch yk+1 that is closer to the previous value yk.

Question 3. Is modified Euler method with step h the same as explicit Euler with half-step h/2?

Answer. No.

Question 4. Which level of detalisation is expected when it is asked to write Matlab code on paper?

Answer. You are not machines, so if there are some small occasional errors, this is forgivable.

Question 5. What to do if Cauchy–Lipschitz theorem doesn’t help to prove the uniqueness of the solution?

Answer. In this case you cannot do anything to prove the uniqueness. Some other theoretical tools exist,
but they are beyond the scope of the current course.
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