TD2 :: Number theory and the RSA scheme

Université Sorbonne Paris Nord, M1. Sergey Dovgal dovgal@lipn.fr

1 Prerequisites

1.1 GEnERALISED Euclid's ALGORIthm

Exercise 1. Using Euclid's algorithm, compute

1. $\operatorname{gcd}(1071,462)$
2. $\operatorname{gcd}(2020,2017)$

Hint. Use the fact that $\operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)$.
Exercise 2. Find integers x and y such that

1. $1071 x-462 y=1$
2. $2020 x-2017 y=1$
3. $2020 x-2017 y=5$

Hint. On the last step of Euclid's algorithm for coprime numbers you obtain $\operatorname{gcd}(n, 1)=1$. This corresponds to the case $a=n, b=1$ with a solution $x=0, y=1$. On each step of Euclid's algorithm $\operatorname{gcd}(a, b)=\operatorname{gcd}(a-b, b)$ the solution for $\widehat{a}=a-b$ and $\widehat{b}=b$ can be converted into the solution for a and b. Proceed with Euclid's algorithm backwards.

1.2 EULER's TOTIENT FUNCTION

Definition. $\phi(n)$ is equal to the number of positive integers from 1 to n that are relatively prime to n.

Exercise 3. Compute $\phi(10)$ and $\phi(1997)$.
Theorem. $\phi(n)$ has the following properties

1. If p is prime then $\phi(p)=p-1$;
2. If p is prime and $n=p^{k}$ then $\phi(n)=p^{k}-p^{k-1}=n\left(1-\frac{1}{p}\right)$;
3. If n and m are relatively prome then $\phi(n m)=\phi(n) \phi(m)$;
4. If p_{1}, \ldots, p_{k} are distinct primes and $n=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$ then

$$
\phi(n)=\left(p_{1}^{r_{1}}-p_{1}^{r_{1}-1}\right) \cdots\left(p_{k}^{r_{k}}-p_{k}^{r_{k}-1}\right)=n\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)
$$

Exercise 4. Compute $\phi\left(3^{2020}\right), \phi(100), \phi\left(6^{2020}\right)$.
Exercise 5. Compute the last digits of $3^{1}, 3^{2}, \ldots, 3^{9}$, then $7^{1}, 7^{2}, \ldots, 7^{9}$, repeat for powers of $2,4,5,6,8,9$. Do you notice any pattern?

Euler's theorem. If a and n are relatively prime, then

$$
a^{\phi(n)} \equiv 1 \quad(\bmod n)
$$

Exercise 6. Compute the last two digits of 1993^{2041}. How to compute high powers when a and n are not relatively prime?
Exercise.* Prove that $\sum_{d \mid n} \phi(d)=n$.

2 RSA ENCRYPTION SCHEME

- Pick two large prime numbers p and q. Keep these numbers secret. Compute the modulus $n=p q$.
- Pick a number $e \in[1, \phi(n)-1]$ coprime with $\phi(n)$. Compute a number d such that $d \cdot e \equiv 1(\bmod \phi(n))$.
- A message is a number $m(\bmod n)$ relatively prime to n.
- An encrypted message is $m^{e}(\bmod n)$.

Exercise 7. How to decrypt the message m ?
Exercise 8. Which parts of the key $\{p, q, n, e, d\}$ should be public and which should be private?
Exercise 9. Let $p=101, q=19$, and $e=7$. Encrypt the message $m=5$. Decrypt the message $s=2$.

2.1 RSA DIGITAL SIGNATURE SCHEME

Use the same parameters as in the encryption scheme. Compute the signature $m^{d}(\bmod n)$. Transmit the pair $\left(m, m^{d}\right)(\bmod n)$.
Exercise 10. Let $p=101, q=19$, and $e=7$. Sign the message $m=5$.

