TD4 :: Pads and Hashes

Université Sorbonne Paris Nord, M1. Sergey Dovgal dovgal@lipn.fr

1 SYMMETRIC BLOCK CYPHERS

Vernam's cypher (one-time pads). For a given key k and a plaintext message m of the same length as k, one-time pad cypher is defined as $c_{k}(m)=m \oplus k$.

Exercise 1. Show that without knowing the secret key, it is impossible to recover plaintext from a cyphertext.

Exercise 2. Show that using the same one-time pad several times is a bad idea.

DES encryption (Data Encryption Standard). An encryption of one block of a fixed size 64 bits with a secret key of a fixed size 56 bits is done in several steps.

- The initial plaintext T_{0} is split into $L_{0} \| R_{0}$.
- A Feistel transform is defined as follows: if $T_{i}=L_{i}| | R_{i}$ is obtained on i th iteration, then $T_{i+1}=L_{i+1} \| R_{i+1}$ is given by $L_{i+1}=R_{i}$ and $R_{i+1}=L_{i} \oplus f\left(R_{i}, k_{i}\right)$, where k_{i} is a secret key, and $f(\cdot, \cdot)$ is a fixed non-linear function.
- The function $f(L, K)$ is described by four steps
- A linear transform $\widetilde{L}:=A L \oplus K$ with a given fixed matrix A.
- The array \widetilde{L} of length 48 is divided into $\widetilde{L}=\widetilde{L}_{0}\|\ldots\| \widetilde{L}_{7}$ blocks of size 6 each.
- To each array \widetilde{L}_{i} a boolean function $f_{i}(\cdot):\{0,1\}^{6} \rightarrow\{0,1\}^{4}$ is applied, where each f_{i} is described by a fixed truth table.
- The output of f is $f_{0}\left(\widetilde{L}_{0}\right)\|\ldots\| f_{7}\left(\widetilde{L}_{7}\right)$.
- The array of keys $k_{1}, \ldots, k_{16}, k_{i} \in\{0,1\}^{48}$ is obtained by a linear transform of $k \in\{0,1\}^{56}$.

Exercise 3. Describe a decrypting procedure for DES, assuming that the secret key is known.

Exercise 4*. Suggest an encryption procedure for a plaintext m divided into blocks of equal length $m_{1}\left\|m_{2}\right\| \ldots$ using an encryption function $E(m, k)$ and a secret key k.

Exercise 5* (Double DES). In order to augment the key size of DES, the following encryption block procedure can be suggested: if k_{1} and k_{2} are two different keys and m is a plaintext message, then the cyphertext is given by $D E S_{k_{1}}\left(D E S_{k_{2}}(m)\right)$.

- Suggest an algorithm that breaks double DES faster than brute-force search, in time $2^{k_{1}}+2^{k_{2}}$.
- (3-DES) Can you suggest a DES-based scheme using only two keys k_{1} and k_{2} which is not breakable under the above attack?

2 HAShing Functions

The goal is to provide an irreversible hashing function $f:\{0,1\}^{32 k} \rightarrow$ $\{0,1\}^{128}$. It also need to satisfy the property that it is extremely difficult to find two large messages m_{1}, m_{2} such that $f\left(m_{1}\right)=f\left(m_{2}\right)$. Such a situation is called a collision.

MD5-hash (broken around 2005 and still widely used in 2020). The states A, B, C, D of 32 bits each are initialised with fixed given values $A_{0}, B_{0}, C_{0}, D_{0}$. The states are updated as follows:

$$
\begin{gathered}
A_{i+1}=D_{i}, C_{i+1}=B_{i}, D_{i+1}=C_{i}, \\
B_{i+1}=B_{i} \oplus\left(\left(F\left(B_{i}, C_{i}, D_{i}\right) \oplus M_{i} \oplus K_{i}\right) \lll s\right) .
\end{gathered}
$$

The function F is fixed for each round $i=1, \ldots, 4, K_{i}$ are fixed constants, and M_{i} is the plaintext.

Exercise 6. Why MD5 cannot be easily inverted?
Exercise 7* (Birthday paradox). Find a collision in MD5 in 2^{64} operations, instead of brute-force search.

Exercise 8*. Generate two binary files good and evil, both outputting your name and student card number, adding This is a GOOD program or This it an EVIL program, and having the same MD5 hash.

Hint: a toolbox for creating programs with an identical md5sum hash can be found open-source in the internet.

