
POLYA ENUMERATION THEOREM FROM SCRATCH

SERGEY DOVGAL

Abstract. In this note I define Species according to the book of Bergeron,
Labelle, and Leroux and present their beautiful proof of the cycle index com-

position theorem. The uniqueness relies on the theory of symmetric functions
in infinitely many variables. No prerequisite knowledge is assumed.

1. Introduction

At the beginning, I like to recall the story from the paper “From finite sets to
Feynman diagrams”.

“ Long ago, when shepherds wanted to see if two herds of sheep were isomorphic,
they would look for a specific isomorphism. In other words, they would line up
both herds and try to match each sheep in one herd with a sheep in the other. But
one day, a shepherd invented decategorification. She realized one could take each
herd and ‘count’ it, setting up an isomorphism between it and a set of ‘numbers’,
which were nonsense words like ‘one, two, three, . . . ’ specially designed for this
purpose. By comparing the resulting numbers, she could show that two herds were
isomorphic without explicitly establishing an isomorphism! In short, the set N of
natural numbers was created by decategorifying FinSet, the category whose objects
are finite sets and whose morphisms are functions between these.

Starting with the natural numbers, the shepherds then invented the basic opera-
tions of arithmetic by decategorifying important operations on finite sets: disjoint
union, Cartesian product, and so on. We describe this in detail in the next section.
Later, their descendants found it useful to extend N to larger number systems with
better formal properties: the integers, the rationals, the real and complex numbers,
and so on. These make it easier to prove a vast range of theorems, even theorems
that are just about natural numbers. But in the process, the original connection to
the category of finite sets was obscured.

Now we are in the position of having an enormous body of mathematics, large
parts of which are secretly the decategorified residues of deeper truths, without know-
ing exactly which parts these are. For example, any equation involving natural
numbers may be the decategorification of an isomorphism between finite sets. In
combinatorics, when people find an isomorphism explaining such an equation, they
say they have found a ‘bijective proof’ of it. But decategorification lurks in many
other places as well, and wherever we find it, we have the opportunity to understand
things more deeply by going back and categorifying: working with objects directly,
rather than their isomorphism classes. ”

In this talk, I plan to give the basics of the theory of species. There exist intricate
connections with representation theory which I don’t fully understand. One of the
aims of the talk is to receive some feedback from people with different background
and understand, at least, partly, those connections.
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2 POLYA ENUMERATION THEOREM FROM SCRATCH

Remark. Before I start, there is one more thing that should be menioned in relationship between

enumerative combinatorics and symmetric functions, but won’t be discussed in this talk. As

Goulden and Jackson mention, the number of d-regular graphs on n vertices equals

(1) rd(n) = [td1 . . . tdn]
∏
i<j

(1 + titj),

and a similar formula for multigraphs also holds:

(2) r′d(n) = [td1 . . . tdn]
∏
i<j

(1 − titj)−1.

Such expansions (and also generating functions related to graphs with degree sequence constraints)

are studied in the literature using modern methods of matrix integrals. In the book “Enumerative
Combinatorics”, they have a different viewpoint, i.e. obtain differential equations. This knowkedge

is relatively new for me, though it is not related to the main topic of the talk, I just wanted to

share what I’ve seen.

2. Preliminaries on Species

Enumerative combinatorics usually tries to answer the question “how many ob-
jects of size n are there?”. In Analytic Combinatorics, people use the generating
functions defined as formal power series, directly as complex-valued functions, in
order to determine the asymptotics of coefficients. Theory of Species focuses on how
to construct the equations, and tries to understand the underlying combinatorial
nature of the class.

In order to give a flavour of what can be done with exponential generating
functions, let us start with a simple example.

Example (Warm-up). An involution is a mapping

(3) f : {1, 2, . . . , n} → {1, 2, . . . , n}

such that f(f(x)) = x for each x. How many involutions on n elements there exist?

Solution. First, the question is how do we distinguish the involutions, i.e. which
involutions are considered equal. Let us encode involutions by permutations such
that their cycles have only lengths 1 or 2.

Next, we consider an exponential generating function (EGF) of the involutions,
which is by definition,

(4) I(z) :=
∑
n>0

an
zn

n!
,

where an equals the number of involutions on n elements. This definition is uni-
versal and very popular. Instead of an there can be substituted any sequence
corresponding to whatever classes of objects with labelled elements. That said,
an exponential generating function of the “elementary brick”, i.e. of two possible
cycles, of length 1 and 2, respectively, equals, by definition,

E(z) = z +
z2

2!
.

Next, we use this elementary construction to get the whole exponential generating
function for the involutions. After checking the properties of two operations, union
and cartesian product, we arrive to the EGF of sets

ez = 1 + z +
z2

2!
+
z3

3!
+ . . .

Next, after checking some elementary properties of the composition of exponential
generating functions, we finally obtain

(5) I(z) = ez+
z2

2 .
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Using the convolution formula for EGF

(6)
(
a0 +

a1
1!
z +

a2
2!
z2 + . . .

)(
b0 +

b1
1!
z +

b2
2!
z2 + . . .

)
=
∑
n>0

zn
n∑
k=0

(
n

k

)
akbn−k,

we obtain the answer

(7) In =

bn/2c∑
k=0

n!

(n− 2k)!2kk!
.

If we ask a question, how many involutions are there up to an automorphism,
it suddenly becomes a much more difficult question because symmetry breaking is
not trivial. This is what I am going to talk about.

Remark. Ordinary generating functions are used to enumerate objects up to their
automorphisms. Inside the definition, we don’t put factorial in the denominator:

(8) Ĩ(z) :=
∑
n>0

ãnz
n.

Both functions I(z) and Ĩ(z) are analytic, i.e. have a positive radius of convergence,
which also means that the coefficients grow not faster than exponents. This prop-
erty helps us understand which combinatorial constructions are possible within a
restricted world of analytic functions.

From now on, a tilde above the function will always denote ordinary
generating function.

Species contain some more information than just a combinatorial class of objects
endowned with a size. Species also encode how the object behave under permuta-
tions of labels, some information about their automorphisms.

Definition (Species). A species of structures F is a rule F which

(1) produces, for each finite set U , a finite set F [U ] (combinatorial class of
objects, usually we take without loss of generality U = {1, 2, . . . , n})

(2) produces, for each permutation σ : U → V , a permutation

F [σ] : F [U ]→ F [V ].

The functions F [σ] should satisfy two functorial properties:

(1) For all permutations σ : U → V, τ : V →W ,

F [τ ◦ σ] = F [τ ] ◦ F [σ],

(2) For the identity permutation IdU : U → U ,

F [IdU ] = IdF [U ] .

Definition (Automorphisms and isomorphisms). Each permutation of labels
σ : {1, . . . , n} → {1, . . . , n} induces a permutation of combinatorial objects. If σ
transforms object o1 ∈ F [{1, . . . , n}] into an object o2 ∈ F [{1, . . . , n}] then σ is
called an isomorphism. An isomorphism from o1 to o1 is called an automorphism.

Definition (Cycle index series). Consider a species F (i.e. class of combinatorial
objects). A cycle index series is a formal power series in an infinite number of
variables x1, x2, . . . consisting of an infinite sum of monomials (each of them finite)

(9) ZF (x1, x2, . . .) =
∑
n>0

1

n!

(∑
σ∈Sn

|FixF [σ]|xσ1
1 xσ2

2 . . .

)
,

where FixF [σ] is the set of objects in the class F left fixed under σ; σk is the
number of cycles of length k in the permutation σ.
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Example (Cycle index series of permutations). Let us find the cycle indes series
for the species of permutations. From the definition, we quickly compute that

|FixF [σ]| = 1σ1σ1!2σ2σ2! . . .

Next, by a simple permutation of the summands in (9), we get

ZF (x1, x2, . . .) =
∑

n1+2n2+...<∞
FixF [n1, n2, . . .]

xn1
1 xn2

2 . . .

1n1n1!2n2n2! . . .

=
∑
n1

∑
n2

. . . xn1
1 xn2

2 . . . =
1

(1− x1)(1− x2) . . .
.

Theorem. Exponential and ordinary generating functions of species F satisfy,
repsectively,

F (x) = ZF (x, 0, 0, . . .),

F̃ (x) = ZF (x, x2, x3, . . .).

Proof. The first equality is a simple exercise. The second equality is a bit more
complicated. We prove the second one, leaving the first one to reader.

According to Burnside’s lemma, for any group G acting on a finite set X, ,the
number of equivalence classes ω can be obtained from the formula

(10) ω =
1

|G|
∑
g∈G
|Xg|,

where Xg is the subset of X fixed by g. We consider only a simple case of Sn acting
on F [{1, . . . , n}]. Substituting the right-hand side into the definition of cycle index
series, we obtain

(11) ZF (x, x2, . . .) =
∑
n>0

(
1

n!

∑
σ∈Sn

|FixF [σ]|

)
xn =

∑
n>0

ωnx
n ,

where ωn denotes the number of object of size n up to equivalence. �

3. Notion of Composition

First, let us return back to a very simple example without cycle indices and
exponential generating functions.

Example (Wrong intuition). Consider the class of binary strings of arbitrary length
S = {0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, . . .}. It is clear that OGF equals

S(x) =
∑
n>0

2nxn =
1

1− 2x
.

Let us consider another representation of binary strings: each string consists of
a block of consecutive ones and zeros. We consider strings that don’t have two
consecutive ones or zeros:

A = {ε, 0, 1, 01, 10, 010, 101, . . .}

which has OGF A(x) = 1 + 2
x

1− x
. After substituting for each symbol a sequence

of symbols, we obtain

(12) A

(
x

1− x

)
= 1 +

2
x

1− x
1− x

1− x
= 1 +

2x

1− 2x
=

1

1− 2x
.
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Usually such lucky elegant formulas don’t hold for unlabelled classes, and in order
to understand the OGF of composition of the two classes, we need to understand
their corresponding cycle index series.

Example (Powerset construction). If A(x) is ordinary generating function of
species A then the species of sets of objects from A has ordinary generating function

(13) E(x) = exp

(
A(x)− A(x2)

2
+
A(x3)

3
− . . .

)
.

This can be proven by a simple manipulation with logarithms and log-exp transform
of another representation

(14) A(x) =
∏
n>0

(1 + xan),

where an = [xn]A(x).

This powerset construction is a part of more general framework. We are going to
formally define the composition species below, but first we present the formulation
of the composition theorem.

Theorem (Cycle index composition theorem). If F and G are species such that
there are no objects of size 0 in the species G, then for their cycle index series it
holds

(15) ZF◦G = ZF (ZG(x1, x2, . . .), ZG(x2, x4, . . .), ZG(x3, x6, . . .), . . .).

However, before we can have the proof, we need to understand a more general
concept.

4. Weighted Structures

Example. Consider the species of rooted plane trees A, and to each rooted plane
tree α ∈ A assign a weight equal

w(α) = tf(α),

where t is a formal variable. The weighted number of trees is defined as a sum of
weights

|A[U ]|w =
∑

α∈A[U ]

w(α).

After regrouping the summands we obtain a part of bivariate generating function

|A[U ]|w =

n∑
k=0

an,kt
k,

where an,k is the number of trees with n vertices and k leaves. If we put t = 1, we
obtain |A[U ]| = nn−1.

Note that weight can be a multivariate product, with each variable marking a
separate parameter.
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For species equipped with weights, there can also be defined ordinary and expo-
nential generating functions, cycle index series:

Fw(x) =
∑
n>0

|F [n]|w
xn

n!
,

F̃w(x) =
∑
n>0

∣∣∣∣F [n]

∼

∣∣∣∣
w

xn,

ZFw
=
∑
n>0

1

n!

(∑
σ∈Sn

|FixF [σ]|wxσ1
1 xσ2

2 . . .

)
,

where |FixF [σ]|w is the weight of the set consisting of the fixed objects under
action of σ. It still holds

Fw(x) = ZFw
(x, 0, 0, . . .),

F̃w(x) = ZFw
(x, x2, x3, . . .).

Example (Hermite Polynomials). Consider weighted class of involutions equiped
with two weight variables. To each involution assign a weight

(16) w(ϕ) = tϕ1(−1)ϕ2 ,

where ϕ1, ϕ2 denote, respectively, the number of fixed points and the number of
cycles of length 2 of the involution ϕ. If you believe me that composition of expo-
nential generating functions “works the same way”, then

(17) Invw(x) = exp

(
tx− 1

2
x2
)

=
∑
n>0

Hen(t)
xn

n!
,

where suddenly, Hen(t) appear to be Hermite polynomials defined by

Hen(t) = (−1)net
2/2 d

n

dtn
e−t

2/2.

Definition (Composition of weighted species). Consider species equipped with
weight Fw, Gv, such that Gv 6= 0, Gv(0) = 0. Then, their composition consists of
objects of type

(U, θ), θ = (π, f, (γp)p∈π)

where π is a partition of U ; f ∈ Fw[π]; γp ∈ Gv[p] for each p.
The weight of the structure is defined as a product of all internal weights

w(θ) = w(f)
∏
p∈π

v(γp).

With a little notation abuse, to each weighted species F = Fw we can put into

correspondence another weighted species F̃ = F̃w wuch that EGF of F̃ coincides

with and OGF of F . In other words, intuitively speaking, objects from F̃ are
additionally endowned with an automorphism.

5. Proof of Composition Theorem

We start with a meta-argument that the theorem about the composition of
ordinary generating functions is equivalent to the theorem of composition of cycle
indices.

Proposition. Suppose the validity of two following propositions.

(1) For any weighted species Fw and Hu it holds

Fw ◦Hu
:

= ZFw
(H̃u(x), H̃u2(x2), H̃u3(x3), . . .),
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(2) If some formal power series f(h1, h2, . . .) satisfies for any class Hu

Fw ◦Hu
:

= f(H̃u(x), H̃u2(x2), H̃u3(x3), . . .),

then f coincides with ZFw .

Then, weighted cycle index composition theorem holds:

ZFw◦Gv = ZFw(ZGv (x1, x2, . . .), ZGv2 (x2, x4, . . .), ZGv3 (x3, x6, . . .), . . .).

Proof. In a rather shameless manner, we use that the composition of species is
associative with respect to the operation of taking ordinary generating function
(why?).

It implies

(Fw ◦Gv) ◦Hu

:
(x) = Fw ◦ (Gv ◦Hu)
:

(x)

= ZFw

(
Gv ◦Hu
:

(x), Gv2 ◦Hu2

:
(x2), . . .

)
= ZFw

(
ZGv

(
H̃u(x), H̃u2(x2), . . .

)
, ZGv2

(
H̃u2(x2), H̃u4(x4), . . .

)
, . . .

)
= (ZFw

◦ ZGv
)
(
H̃u(x), H̃u2(x2), . . .

)
.

�

Lemma. The first proposition holds.

Proof. This statement is at the core of the proof and it is the most technical part.
Recall the structure of the composition species. Since we consider only automor-
phisms, we restrict ourselves only to permutations that have the following specific
structure: it induces the permutation of the partition, and within each partition it
induces a separate permutation.

Let’s prove that EGF of corresponding species F̃ ◦G can be expressed as the

right-hand side ZFw
(H̃u(x), H̃u2(x2), H̃u3(x3), . . .).

Suppose that σπ has cycle type N . Clearly, the species F ◦G: can be decomposed
into subspecies over all possible cycle types

F ◦G: =
∑
N

(F ◦G:)N .

Each object from (F ◦G:)N is a set of necklaces of objects from G and its EGF can
be computed as

(18) (F ◦G:)N (x) = |FixF [N ]|w
(CYC 1(G)(x))n1

n1!

(CYC 2(G)(x))n2

n2!
. . . ,

where CYC k(G)(x) =
1

k
G̃vm(xm).

This immediately implies

Fw ◦Gv
:

(x) =
∑
N

(Fw ◦Gv
:

)N (x)

=
∑

n1,n2,...

|FixF [n1, n2, . . .]|w
(G̃v(x))n1

1n1n1!

(G̃v2(x2))n2

2n2n2!
. . .

= ZFw(G̃v(x), G̃v2(x2), . . .).

�

Lemma. The second proposition holds.
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Proof. Consider
Hu = Xt1 +Xt2 +Xt3 + . . .

For the class Hu it holds

H̃uk(xk) = Skx
k := (tk1 + tk2 + tk3 + . . .)xk.

We show that if for all ~t, x it holds

f(S1x, S2x
2, S3x

3, . . .) = 0

then for all ~x it holds
f(x1, x2, . . .) = 0.

By considering the differences, it would be enough for the theorem. Suppose that
f(x1, x2, . . .) =

∑
n1,n2,...

an1,n2,...x
n1
1 xn2

2 . . .. Set

fn(x1, x2, x3, . . .) =
∑

n1+2n2+...=n

an1,n2,...x
n1
1 xn2

2 . . .

Then, each fn is a polynomial of degree n and f(S1x, S2x, . . .) = 0 implies∑
n>0

fn(S1, S2, . . .)x
n = 0

which implies coefficientwise the desired equality.
�

6. Conclusion

I will summarise some key ideas of the proof.

• Near the end, we discovered that OGF can be considered as an EGF of a
richer structure which simplifies the analysis from an algebraic viewpoint
and complexifies the combinatorial counterpart.

• It is useful to know cycle index of the considered species but equations are
far from trivial, because they involve infinite sums. However, the methods
for asymptotic analysis have been developed.

• We were not able to prove the composition theorem directly, rather we had
to use the full generality of the composition theorem in an essential way.
The weights played their role when we used the uniqueness which was one
of the key ingredient.

• Bergeron, Labelle and Leroux point out that cycle index series correspond
to characters of permutation representations of the symmetric group. More-
over, the substitution formula gives a direct link between the composition
of species and operation of plethysm on symmetric functions. I cannot fully
appreciate this statement yet, but hope to understand it in the course of
the discussion.

• Assymetry index series is a tool for studying objects like unrooted trees,
whose stabilizer is reduced to the identity permutation:

Fw ◦Gv(x) = ΓFw
(Gv(x), Gv2(x2), . . .)

which also satisfies

ΓFw◦Gv
= ΓFw

◦ ΓGv
.

The negative signs in the assymetry index series make it difficult to sample
unrooted object (but sometimes it is enough to unroot a randomly gener-
ated rooted object).
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