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Directeurs de thèse M. Olivier BODINI
M. Vlady RAVELOMANANA

Rapporteurs M. Éric FUSY
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Abstract

This thesis is devoted to the development of tools and the use of methods from Analytic Combinatorics, in-
cluding exact and asymptotic enumeration, statistical properties of random objects, and random generation.
The key ingredient is the multidisciplinarity of the domain, which is emphasised by using examples from
computational logic, statistical mechanics, biology, mathematical statistics, networks and queueing theory.

Résumé

Cette thèse est consacrée au développement des outils et à l’utilisation des méthodes de la combinatoire
analytique, notamment l’énumération exacte et asymptotique, les propriétés statistiques des objets aléatoires
et la génération aléatoire. L’ingrédient clé est la multidisciplinarité du domaine, qui est soulignée par des
exemples tirés de la programmation logique, de la mécanique statistique, de la biologie, de la statistique
mathématique, des réseaux et de la théorie des files d’attente.

iii



iv



Preface

In my impression, a doctoral thesis in France is a mixture of personal and professional matters. The ALÉA
community1 impressed me a lot and has become my second family. Since my arrival in France, I have
discovered many wonderful people with beautiful ideas and challenging projects.

While trying to stick to the scientific part of this thesis, I would like to briefly explain what motivated
me to learn Analytic Combinatorics and try to do my best to motivate others. I got hooked on generating
functions when I failed to solve the following combinatorial problem from the International Mathematical
Olympiad Shortlist (2007) during the national selection days in Belarus in 2008 at the age of 15.

Problem C3 from IMO Shortlist-2007 (adapted). Assume that the set S = {1, 2, . . . , n} can be
colored red and blue, with the following condition being satisfied: the set S × S × S contains exactly 2007
ordered triples (x, y, z) such that (i) x, y, z are of the same color, and (ii) x+ y + z is divisible by n. Prove
that if the number of red and blue colored numbers is, respectively, r and b, then r2 − rb+ b2 = 2007.

Solution (sketch). Let k1, k2, . . . , kr be the indices colored red, and `1, . . . , `b be the indices colored blue.
Consider a polynomial

F (x) = (xk1 + . . .+ xkr )3 + (x`1 + . . .+ x`b)3.

By expanding the brackets, we discover that the mth coefficient of F (x) is equal to the number of same-
colored triples of indices such that their sum equals m. Using a well-known formula for the sum of cubes

A3 +B3 = (A+B)(A2 −AB +B2),

we observe that F (x) can be represented as a product

F (x) = (x1 + . . .+ xn)
(

(xk1 + . . .+ xkr )2 − (xk1 + . . .+ xkr )(x`1 + . . .+ x`b) + (x`1 + . . .+ x`b)2
)
.

By taking the sum of nth, 2nth and 3nth coefficients of F (x) (i.e. the sum of coefficients whose indices are
divisible by n), we observe that each coefficient of (xk1 + . . . + xkr )2 − (xk1 + . . . + xkr )(x`1 + . . . + x`b) +
(x`1 + . . .+ x`b)2 contributes to the sum exactly once, and therefore, the desired sum is equal to the sum of
coefficients of the second multiple term in F (x). By substituting x = 1 into the second bracket, we obtain
the desired identity.

The fact that a solution to a combinatorial problem involved polynomials, impressed me a lot. The
polynomials used in the proof are called generating functions and are now taught in almost every higher
education mathematical program. Since then, I started to create my own collection of the problems using
generating functions and share it with people, until in 2013 I discovered the course called Analytic Com-
binatorics led by Robert Sedgewick on the on-line educational platform Coursera. This course, based on
the book with the same title written in co-authorship with Philippe Flajolet, explained how to lift formal
power series manipulation to a combinatorial level, and showed how to use complex analysis to extract the
asymptotics, which seemed a highly exotic but beautiful technique for me at that point.

1ALÉA, groupe de travail du GDR-IM in France and abroad http://gt-alea.math.cnrs.fr
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Later, I have had a chance to teach this material at LESh (ecological summer school) and in MIPT
(Moscow Institute of Physics and Technology) while I was a Master student in MIPT, at the department
of Mathematical Foundations of Control. It was a great happiness to teach discrete mathematics to other
students, trying to present the mathematical beauty of the subject and to reveal its applications. It was
my duty to show the reasons why the subject has been present in their curriculum. This motivated me
to search for more techniques and applications, until I finally discovered the French community and a rich
heritage of Philippe Flajolet. It turned out that the contribution of analytic combinatorics extended far
beyond what I previously knew: the applications include analysis of algorithms, number theory, statistical
mechanics, quantum gravity, maps on surfaces, words, automata, graphs and phase transitions, random
walks, queues and networks, concurrent processes, DNA and RNA, lambda terms, tilings, molecules. . . The
variety of tools also very impressive: differential equations in several variables, algebraic geometry, topology
and Morse theory, convex optimisation, special functions, matrix integrals, complex martingales, etc.

The division between the methods and applications can be highly subjective, as e.g. combinatorial objects
such as graphs and directed graphs are, on one hand, objects of study by themselves, and on the other hand,
serve as a language for describing objects from other disciplines. This thesis is about both, tools and their
applications.
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Chapter 1

Introduction

Contents
1.1 Elements of computational logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Propositional logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Lambda calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Expressivity of lambda calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Phase transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Zero-one laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Giant component and the Airy function . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Related studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Permutations and maps on surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Boltzmann sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Generation from context-free grammars . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2 Multiparametric sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.3 Miscellaneous applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 A few words about the tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.1 Tree-like and graph-like combinatorial structures . . . . . . . . . . . . . . . . . . . 12
1.5.2 Catalytic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.3 Infinite systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.4 Convex optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

According to Flajolet and Sedgewick [FS09], analytic combinatorics can be divided into two large parts:
the symbolic method and asymptotic analysis. The first part is a language, or a certain algebra, which
allows to turn natural combinatorial descriptions of objects into the equations on their respective generating
functions. For example, the sequence an counting the number of chemical isomers of alcohols CnH2n+1OH
without asymmetric carbon atoms [Pól36] has generating function F (z) satisfying a functional equation

F (z) =
1

1− zF (z2)
.

The structures whose generating functions satisfy equations involving substitutions, are sometimes now called
Pólya structures. Due to universality and flexibility of the method, it has many applications outside the field
of pure combinatorics. The classes of possible combinatorial objects that can be studied using the tools from
analytic combinatorics include: (i) atonal musical combinatorics, which is study of combinations of chords
and scales in the dihedral group of order 24 [Kei91]; (ii) objects from computational logic: propositional
statements, “and/or” trees, conjunctive normal forms, lambda terms; (iii) random graphs and their phase
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transitions, metric properties of graphs (diameter, circumference), planarity, colorability, etc; (iv) objects
related to statistical mechanics, Ising model on various lattices, tilings and Bose–Einstein condensations;
(v) random maps on surfaces with possible decorations and degree constraints; random walks with various
types of constraints; permutations and chord diagrams; (vi) queues and networks; (vii) biological objects:
DNA and RNA sequences, philogenetic trees in the context of evolution; (viii) in general, any objects whose
multivariate generating functions can be specified using systems of equations, possibly involving substitutions,
derivatives, integrals and non-linearities.

The second part, asymptotic analysis, is required to process the equations obtained on the previous
step and to extract the asymptotic properties. The involved techniques come mostly from real-valued or
complex-valued analysis, and include, for example, Tauberian analysis, singularity analysis and saddle point
method.

An exemplary execution of the singularity analysis is an asymptotic expansion of n! in Stirling’s formula.
Applying standard techniques to generating function of Cayley trees

T (z) = zeT (z), T (z) =
∑
n>0

nn−1

n!
zn

one obtains
nn−1

n!
∼ en√

2πn3

(
1− 1

12n
+O(n−2)

)
.

The methods allow to obtain the asymptotics in the form of the main asymptotic term or often the full
asymptotic expansions, for the enumeration of objects and for limiting distributions of numerous parameters
inside these objects.

From “bird’s eye view”, the three most typical problems from enumerative combinatorics include

1. Enumeration. To each object a size is assigned, and it is asked, how many objects of size n does there
exist?

2. Statistical properties. To each object a set of parameters is assigned (e.g. number of vertices and root
face degree in a map), and it is asked, what is the distribution (joint distribution) of these parameters?

3. Random generation. Generate uniformly at random an object of given size n. Sometimes the distribu-
tion is not uniform and additional assumptions are superimposed.

Our contributions extend the techniques of analytic combinatorics and the range of their applicability in
several ways.

The present thesis develops on the contributions written in cooperation with my coauthors. Here, a
broader context of rapidly developing methods and applications is given. The picture of how different
methods and applications match is summarised in Table 1.1.

λ-calculus networks mathematical queueing biology statistical
statistics theory mechanics

infinite algebraic de Bruijn
systems size notion

Boltzmann formal Bianconi– combinatorial multi-customer RNA design tilings,
tuning verification Barabási model learning w/proc. sharing simulation BEC

partial linear random
diff. eq. λ-terms maps

Airy height graphs with 2-SATfunction profile degree constraints

Table 1.1: Crossroad of methods and their applications discussed in the current thesis
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1.1 Elements of computational logic
Computational logic forms a basis of the modern proof systems. The propositional logic, also called zeroth-
order logic operates with Boolean expressions and their transformations. Using the axioms and inference
rules, it is possible to obtain an inductively defined language of statements. The first-order logic and
second-order logic have increasing expressivity allowing universal and existential quantification ∀ and ∃. The
difference between first-order and second-order logics is that the latter allows to quantify over sequences and
subsets, while the first allows only to quantify over finite sets of variables.

1.1.1 Propositional logic

Propositional logic is sometimes called zeroth-order logic and does not use universal and existential quantifiers
∃ and ∀. Each formula is a Boolean expression in several variables such as P → Q, (P ∨ Q) → R, etc. In
propositional calculus, one of the major focuses belongs to the proofs which are tightly related to automatic
proofs generated by proof assistants.

A set of premises is a set of boolean formulae like, for example, a set {P, P → Q}. These formulae are
not necessarily tautologies. Then, a set of axioms is defined. An example of such an axiom is modus ponens

which is symbolically written as
A,A→ B

B
meaning that if the statements A and A→ B belong to the set

of premises, then a formula B can be deduced. Various sets of deduction axioms give different examples
of propositional calculus systems. Finally, a proof is a sequence of applications of the inference rules to an
initial set of premises.

One of the examples is the natural deduction system which uses only the unary operation of negation
{¬} and binary operators {∧,∨,→,↔}. The set of inference rules contain eleven different rules. We shall
return to the natural deduction system later in the context of Curry–Howard correspondence.

1.1.2 Lambda calculus

Lambda terms represent anonymous functions which can, in their turn, take functions as arguments, and
return functions. Recursively, each function may take functions as arguments, et cetera. For example, in a
rather informal way,

f(x, y) := x(y)

defines a function f which takes as an input two arguments x and y, where x is also a function, and returns
a result of application of x to y. In a dedicated lambda notation this function is written as

f := λx.λy.xy := λx.λy.(xy),

where λx. and λy. are sorts of “declarations” that x and y are going to be the arguments of the function,
and xy denotes the application of x and y, just as in group theory, the composition is sometimes denoted as
a product and no symbol between the two elements is used. When three terms are applied to one another,
the associative rule does not apply and parenthesis may be necessary.

Result 1. In the paper [BBD18b] in co-authorship with Maciej Bendkowski and Olivier Bodini, we present
a quantitative, statistical analysis of random lambda terms in the de Bruijn notation. Following an analytic
approach using multivariate generating functions, we investigate the distribution of various combinatorial
parameters of random open and closed lambda terms, including the number of redexes, head abstractions,
free variables or the de Bruijn index value profile. Moreover, we conduct an average-case complexity analysis
of finding the leftmost-outermost redex in random lambda terms showing that it is on average constant.
The main technical ingredient of our analysis is a novel method of dealing with combinatorial parameters
inside certain infinite, algebraic systems of multivariate generating functions. Finally, we briefly discuss the
random generation of lambda terms following a given skewed parameter distribution and provide empirical
results regarding a series of more involved combinatorial parameters such as the number of open subterms
and binding abstractions in closed lambda terms.
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The types are then introduced, so that a lambda expression can be correctly interpreted. In the above
example, we might say that y is of type a, and therefore, x should be of type a→ b, because it takes y as an
argument. Combining, we could write that the function f has the type (a→ b, a)→ b. It is not common to
use tuples when writing types, in type theory of lambda terms and a different notation is used.

In fact, if a function takes several arguments, like f(x, y, z), it can be represented as a function that takes
one argument x and returns a function of two arguments y and z: x 7→ g(y, z). The same applies to the
function g. Therefore, if x has type a, y has type b, z has type c, and f returns a value of type d, then it can
be said that f(x, y, z) has type a → b → c → d := a → (b → (c → d)). Continuing the previous example,
the lambda term λx.λy.xy can be assigned a type (a→ b)→ (a→ b).

Some lambda terms cannot be assigned any type, as, for example, λx.xx, as it involves substituting x
into itself, which should mean that x is a function, and is therefore simultaneously of types a → a and a.
The problem of typeability of a lambda term is undecidable.

1.1.3 Expressivity of lambda calculus

Lambda calculus with types by itself turned out to be a universal model of computation, along with a
Turing machine. In fact, the celebrated Church–Turing thesis can be viewed as the equivalence of the
definitions of the computable functions in terms of either Turing machines or lambda calculus. One step of
computation in lambda calculus corresponds to a certain operation called beta reduction which can be viewed
as a substitution step of the function composition. An example of such substitution can be performed on the
term f := λy.((λx.xx)y), despite the latter being untyped. The function represented by lambda term λx.xx
applies its argument to itself, and therefore, application to y yields y. Consequently, beta-reduction of f is
a lambda term λy.(yy). Basing on a choice of which application to expand, several beta-reduction strategies
are possible. The language of lambda terms, equipped with beta reduction, is of the same expressivity as
Turing machines with a notion of a computation step.

A final touch on computation logic is Curry–Howard isomorphism. Eventually, the typing rules can be
written in a similar manner as the deduction rules from logic systems. Assuming the notation f : α meaning
that a lambda term f is of type α, one of the examples of type deduction rules can be written as follows:

Γ ` F1 : α→ β; Γ ` F2 : α

Γ ` F1F2 : β

which means that an application of two lambda terms of types α→ β and α inherits the type β. Γ denotes a
set of premises from which type deduction is performed. A corresponding inference rule is the modus ponens
rule mentioned above:

Γ ` α→ β; Γ ` α
Γ ` β

.

This correspondence or isomorphism allows to build a bijection between statements and lambda terms,
between true statements and typeable lambda terms, and finally, between proofs and types.

One of the major challenges in formal verification and enumerative combinatorics is to enumerate and
randomly generate typeable lambda terms, and consequently, lambda terms of given type. Given that the
typeability problem is undecidable, no simple solution is available.

1.2 Phase transitions
Phase transitions in random graphs, directed graphs, hypergraphs, random geometric complexes, percola-
tions, real-world networks and constraint satisfiability problems (CSP) have become rapidly developing areas
with a huge spread of interconnected publications.

The term “phase transition” was mostly used by physicists, but can be also applied to many combinatorial
situations, when a small change of a certain parameter results in a huge asymptotic change of some other
parameter. The original studies of the physical phase transitions, including Ising and Potts model, considered
graphs which formed certain regular lattices: from rectangular ones to more complicated including maps on
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surfaces. Of close relation is the percolation theory which is sometimes called “the simplest model displaying
a phase transition”. Friendly introductions into percolation theory and Potts models can be found in a PhD
Thesis [Dom13], a survey paper [Bea+10] and in a lecture course [Dum17].

1.2.1 Zero-one laws
Zero-one laws in random graphs, mappings and other structures form an interesting mixture between com-
binatorics and logics. A wonderful introduction to the subject is given in the book [Spe13]. Zero-one laws
can be roughly viewed as the precursors of phase transitions, while the latter may be considered as the
refined versions. Per contra, not every property is monotonic in the number of edges, and the existence of a
threshold function for a property is not always guaranteed.

In a random graph G(n, p(n)), a property A holds almost surely if

lim
n→∞

P[G(n, p(n)) |= A] = 1,

and almost never if
lim
n→∞

P[G(n, p(n)) |= A] = 0.

For p = 1/2, for the case when all the graphs with given number of vertices are drawn uniformly at random,
the following statement holds.

Zero-one property for labelled graphs (Fagin’s theorem). If A is a property expressible in first-order
logic, then either this property A holds for G(n, 1/2) almost never or almost surely.

Remarkably, connectedness and bipartiteness are not expressible in first order logic, and such properties
as the presence of a triangle, are. The above property breaks for random mappings, so that the zero-one law
does not anymore necessarily hold, but a different theorem can be stated. The details can be found in [FS09,
p. 467].

First-order sentences for random mappings (Lynch’s theorem). Let µn(A) be the probability that
a random mapping ϕ : {1, 2, . . . , n} → {1, 2, . . . , n} satisfies A. Then, the limit limn→∞ µn(P ) exists and its
value is given by an expression constructed from integer constants and the operations +,−,×,÷, and ex.

For some edge probabilities like p(n) = 1/n, the limit of the probability that a random labelled graph
satisfies property A, exists, but its value is not equal to 0 and 1. One of the major results of [SS88] and [Spe13]
is that the exponent of the critical probability is forced to be a rational number.

Critical exponent characterisation. If α ∈ (0, 1) and α is irrational, then p(n) = n−α satisfies the
zero-one law relative to any first-order sentence A, that is, either the property A holds for G(n, p(n)) almost
never or almost surely.

The aforementioned results can be regarded as a broader guideline to a narrower refine analysis of phase
transitions in various combinatorial structures.

1.2.2 Giant component and the Airy function
Airy function plays a central role in the analysis of asymptotics of the phase transitions [Ban+01; FSS04]
and also played its role in Kontsevitch’s proof of Witten’s conjecture [Kon92]. It is defined as

A(y) =

∫ ∞
−∞

ei(x
3/3−xy)dx

and satisfies a second-order linear differential equation

A′′(y) + yA(y) = 0.

A matrix version of the Airy function also appears in the doctoral thesis of Kontsevich [Kon92], which
constitutes the proof of celebrated Witten’s conjecture, enumerative proof of the equivalence of two models of
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quantum gravity. The omnipresence of Airy function in combinatorics is of the same nature as omnipresence
of Gaussian law in probability: while the philosophical reason for Gaussian law is the disappearance of the
first derivative in the log-density of the distribution:

log f(z) ≈ g(z0) +
g′′(z0)

2!
(z − z0)2, g(z) = log f(z),

Airy-related distributions appear when two first derivatives vanish:

log f(z) ≈ g(z0) +
g′′′(z0)

3!
(z − z0)3, g(z) = log f(z).

The reason why the second derivative may vanish, is that systems prone to phase transitions contain a
variable parameter α (in the case of simple graphs, ratio between the number of edges and vertices), and the
second derivative of log f(z) depends on this parameter α. For some systems, there exists a parameter α = α0

such that the second derivative vanishes at this value of the parameter. This explains “Airy phenomenon”
in such systems.

An example of Airy phenomenon in the context of phase transitions is the probability that a graph
consists only of trees and unicycles which is expressed in terms of the Airy function when the ratio of the
number of edges m and the number of vertices n approaches 1/2 at speed n−1/3. The same phenomenon can
be observed in graphs with degree constraints, with a different value of the ratio determined by a system of
functional equations.

The term giant component is used to define the largest connected component of size Θ(n) in a graph
with n vertices and m = cn edges, c > 1/2. This component is not a tree neither a unicycle, so it becomes
identical to the complex component of the graph, which is the set of connected components whose number
of edges is greater than its number of vertices. Airy function plays the central role in the description of the
period when c ≈ 1/2 and the giant component starts to appear [Jan+93].

Result 2. In the paper [DR18] jointly with Vlady Ravelomanana, we show that by restricting the degrees
of the vertices of a graph to an arbitrary set ∆, the threshold point α(∆) of the phase transition for a
random graph with n vertices and m = α(∆)n edges can be either accelerated (e.g., α(∆) ≈ 0.381 for
∆ = {0, 1, 4, 5}) or postponed (e.g., α({20, 21, · · · , 2k, · · · }) ≈ 0.795) compared to a classical Erdős–Rényi
random graph with α(Z>0) = 1

2 . In particular, we prove that the probability of graph being non-planar and
the probability of having a complex component, goes from 0 to 1 as m passes α(∆)n. We investigate these
probabilities and also different graph statistics inside the critical window of transition (diameter, longest
path and circumference of a complex component).

A different result using similar techniques can be obtained for the phase transition of 2-SAT.

Result 3. In the paper [Dov19] we prove that, with high probability, the contradictory components of a
random 2-SAT formula in the subcritical phase of the phase transition have only 3-regular kernels. This
follows from the relation between these kernels and the complex component of a random graph in the sub-
critical phase. This partly settles the question about the structural similarity between the phase transitions
in 2-SAT and random graphs. As a byproduct, we describe the technique that allows to obtain a full asymp-
totic expansion of the satisfiability in the subcritical phase. We also obtain the distribution of the number
of contradictory variables and the structure of the spine in the subcritical phase.

1.2.3 Related studies
Apart from the existing practical applications in hardware in software engineering (e.g. cuckoo hashing [DM03;
Die+10]), phase transitions in graphs and digraphs are studied in their own right. Of the most recent refer-
ences on random graphs and networks can be mentioned the books [J LR11; Van16]. Concerning the phase
transition in directed graphs, the width of the transitions window has been described in [ LS09] and a de-
scription of the giant core is given in [PP17]. Recent studies reveal the properties of phase transitions in
random hypergraphs [dPan15; CKP18] and simplicial complexes [Coo+18].
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One of the most recent surveys on satisfiability is a part of the excellent “Art of Computer Programming,
Volume 4” by Knuth [Knu15]. The k-SAT problem has also played its role on the intersection of theoretical
computer science and theoretical physics. One of the surprising connections is that several NP-complete
decision problems can be reformulated in terms of positivity of the ground state energy of an Ising model
and that the techniques like belief propagation and cavity method used in statistical physics can be also
used to predict the behaviour of random formulae, see [MZ97; BCM02; MPZ02]. At the same time, phase
transitions in random CSP seem to be closely related to their algorithmic complexity, see [AC08]. While
the existence of satisfiability threshold and its value for k-SAT with k > 3 remains an unsolved open
problem, several advances have been made, including a precise asymptotic location of the transition point
for k → ∞ [CP16], phase transitions of k-XORSAT [HR11; PS16], and more generally, systems of linear
equations over Fq [Ayr+17], improvements in k-colorability threshold [CV13].

1.3 Permutations and maps on surfaces

Maps or graphs embedded into surfaces, are now one of the central objects of study of modern mathematical
physics. The recurrences related to maps appear in such fields as quantum field theory, quantum gravity,
string theories, integrable systems. The popularity of maps has led to creation of multiple research groups,
conferences and dedicated events during a couple of last decades.

Theory of partial differential equations is closely related to enumeration through construction of mul-
tivariate generating function. The derivative and multiplication operations have their own combinatorial
meaning though the symbolic method. On the other hand, along with a combinatorial interpretation of the
differential equations, it is somewhat curious to learn about their physical interpretation as well.

For example, let

F =
1

24
t1 +

1

6
t30 +

1

48
t21 + · · ·

denote a formal power series of infinitely many variables (t0, t1, . . .) calledWitten’s generating function [Kon92].
We do not present its rigorous definition here, as it necessitates certain background from Riemann surfaces,
moduli curves and Chern classes. However, the role of maps in the definition of this generating function
consists in the correspondence between ribbon graphs and certain moduli spaces. Witten’s conjecture, and
later, Kontsevitch’s theorem, states that the second derivative u = ∂2F/∂t20 satisfies Korteweg–de Vries
equation

∂tu = uux +
1

12
uxxx, x := t0, t := t1.

At the same time, if t denotes the time variable and x denotes the spacial coordinate, this equation has a
physical meaning of wave model on shallow water surface. This connection seems now to be only a top of
the iceberg and people continue discovering new connections between hierarchies of physical equations and
multivariate generating functions of combinatorial families [GJ08; Cha].

While most of the map families appearing in mathematical physics can be embedded into a surface with
bounded genus, the question of behaviour of maps without fixed genus is also relevant. Thus said, the
enumeration of such map families gives another non-linear equation known as Riccati equation appearing in
physical expansions [Kud91] and population dynamics [NR02]. A different viewpoint on maps consists in
representing a map as a pair of permutations (σ, α) such that α is an involution and the subgroup generated
by σ and α acts transitively on {1, 2, . . . , n}.

Result 4. In the paper [Bod+18a], written jointly with Olivier Bodini, Julien Courtiel and Hsien-Kuei
Hwang, we consider random rooted maps without regard to their genus, with fixed large number of edges,
and address the problem of limiting distributions for six different parameters: vertices, leaves, loops, root
edges, root isthmus, and root vertex degree. Each of these leads to a different limiting distribution, varying
from (discrete) geometric and Poisson distributions to different continuous ones: Beta, normal, uniform, and
an unusual distribution whose moments are characterised by a recursive triangular array.
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1.4 Boltzmann sampling
The principle of recursive generation and Boltzmann sampling can be most easily illustrated using the
example of Catalan binary trees, which are defined as rooted binary trees. It is known that the number of
Catalan trees with n nodes satisfies the recurrence

Tn =

n−1∑
k=1

TkTn−k−1, T1 = 1. (1.4.1)

Moreover, this recurrence contains structural information about these binary trees: the product operation
between Tk and Tn−k−1 corresponds to joining together two trees of sizes k and n− k− 1 to form a new tree
of size n. A natural way to generate a Catalan tree of size n uniformly at random in a recursive manner is
to generate a random variable Ξn from discrete distribution

P(Ξn = k) =
TkTn−k−1∑n−1
k=1 TkTn−k−1

, (1.4.2)

and to form a binary tree by linking two recursively generated trees with k = Ξn and n− k − 1 vertices.

T = • +

•

T T

Figure 1.1: Combinatorial representation of the recursion for binary Catalan trees.

The complexity of such a method (called recursive method) is quadratic in target size n. Boltzmann
sampler is a different algorithm allowing a faster generation, in quasi-linear time, but with an approximate
size. The method consists of taking the equation which generation function T (z) =

∑
n>0 Tnz

n satisfies

T (z) = z + zT 2(z), (1.4.3)

fixing a positive value z ∈ (0, 1/2), and making a Bernoulli choice Ξz such that

P(Ξz = 0) =
z

z + zT 2(z)
, P(Ξz = 1) =

zT 2(z)

z + zT 2(z)
. (1.4.4)

If Ξz = 0, the generation outputs a single node and stops, otherwise it recursively calls two Boltzmann
samplers with a parameter z and outputs a tree constructed by linking two recursively generated trees.

This elegant algorithm was designed [Duc+04] and provides a fast generation tool in the cases when the
exact parameter value constraint can be relaxed.

Recursive generation of combinatorial structures is discussed in more detail in Chapter 5. Several appli-
cations of multiparametric sampling are discusses in Chapter 10.

1.4.1 Generation from context-free grammars
Generation of words uniformly at random from the language defined by an unambiguous context free grammar
can be settled using either the recursive approach or Boltzmann sampling approach. A context free grammar
is defined as the set of its production rules, such as the context-free grammar for well-formed parentheses

S → SS | (S) | ().

A context-free grammar is unambiguous if every word derived from the grammar has a unique leftmost
derivation.
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When sampling words from context-free grammars using Boltzmann sampler, the output size of the word
is not fixed, and in fact, is a random variable. The dedicated tuning procedure consists in choosing the
algorithm parameter z, which is the argument of the generating functions, giving the desired expected size
of the generated word. The case of unambiguous context free grammars corresponds to systems of algebraic
equations

F (z) = Φ(F (z), z),

where F (z) =
(
F1(z), . . . , Fm(z)

)
denotes a vector of generating functions, where

Fk(z) =
∑
n>0

an,kz
n,

and an,k denotes the number of words of length n which can be produced from kth non-terminal.
As shown in the work [PSS12] tightly related with previous works on numerical iterations for species

theory [BLL98], Newton’s iteration provides fast convergence towards the target value F (z), once the ar-
gument z is given. Despite the large body of work on tuning and sampling from context-free grammars,
including [BGR15; BP10; Bod10; BRS12; BBJ13; BFR17], the particular choice of the schemes: singular vs.
pointed Boltzmann sampler, approximate vs. exact, tuning precision, behaviour of the Newton oracle near
the singularity point, etc. can be far from obvious.

1.4.2 Multiparametric sampling
While the principles of Boltzmann sampling can be quickly generalised to the multiparametric setting corre-
sponding to weighted generation, the process of finding the arguments of generating functions corresponding
to given weight, is not trivial. In the multiparametric setting, for the case of context free unambiguous
grammars, the system of algebraic equations takes form

F (z1, . . . , zn) = Φ(F (z1, . . . , zn), z1, . . . , zn). (1.4.5)

Instead of marking the total length of the word as in the case of univariate generating functions, the variables
z1, . . . , zn can mark the proportions of certain symbols inside the generated words, or some local patterns.

Result 5. In the paper [BBD18a], written in co-authorship with Maciej Bendkowski and Olivier Bodini, we
propose an efficient polynomial-time, with respect to the number of tuned parameters, tuning algorithm based
on convex optimisation techniques. We illustrate the efficiency of our approach using several applications of
rational, algebraic and Pólya structures including polyomino tilings with prescribed tile frequencies, planar
trees with a given specific node degree distribution, and weighted partitions. Our implementation is available
on-line, http://github.com/maciej-bendkowski/boltzmann-brain.

While the family of languages derived from unambiguous context-free grammars may seem not very
expressive, it turns out that it is possible to carry out the analysis by specifying only a part of a non context
free language, for example, the set of words of a certain fixed length, by incorporating this length parameter
into the context free grammar itself. This technique may require very long and complex descriptions,
potentially, exponentially long, but tractable in some cases, [Ham+19]. We consider several such examples
in Chapter 10.

Some examples of families, including graphs, tilings, lambda terms and weighted integer partitions have
been implemented, see Section 10.6.

1.4.3 Miscellaneous applications
The multidimensional tuning presented in Chapter 5 can be applied in many different contexts, including
software verification, queueing theory, biology and statistical mechanics. Several such applications are dis-
cussed in detail in Chapter 10. In particular, Bianconi–Barabási model, along with related Bose–Einstein
condensation model is discussed in Section 10.3; combinatorial learning which is a new technique mixing
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mathematical statistics and enumerative combinatorics, is introduced in Section 10.5; queueing networks
with multiple customer types and processor sharing is introduced in Section 10.4; one more application
communicated to me by Yann Ponty and Sebastian Will, is presented in Section 10.2. Apart from these
various applications, several proof of concept implementations for tilings, random graphs, lambda terms
and weighted integer partitions have been brought into life and are available at https://github.com/
maciej-bendkowski/multiparametric-combinatorial-samplers. They are discussed in detail in Sec-
tion 10.6.

1.5 A few words about the tools

1.5.1 Tree-like and graph-like combinatorial structures
The first noticeable feature of formal power series is that if the analysed generating function f(z) is analytic
at zero, then its coefficients [zn]f(z) grow not faster than Cn for some constant C > 0. For exponential
generating functions, which enumerate labelled objects, i.e. generating functions of the kind

f(z) =
∑
n>0

anz
n

n!
,

where an denotes the number of labelled objects of size n, the growth of an is bounded by n!Cn = en logn+O(n).
This behaviour is typically the case for simply-generated trees whose generating function satisfies

f(z) = zφ(f(z)),

where φ(t) is an entire function of t. At the same time, very simple combinatorics tells us that the number of
simple graphs on n labelled nodes with arbitrary number of edges is 2(n2) = eΘ(n2). Such coefficient growth
implies that the generating function of simple graphs is not analytic.

This observation shows a gap between the enumeration of tree-like and graph-like structures. The word
“analytic” from the term “analytic combinatorics” does not anymore apply to such a divergent series

f(z) =
∑
n>0

2(n2)zn,

since it is not analytic at z = 0. There are several ways to handle this difficulty.
First approach. Consider the series formally and carry out certain manipulations on the coefficient

level. This approach can be illustrated by looking at the asymptotics of the coefficients of f(z)2 where
f(z) =

∑
n>0 n!zn. The coefficient at monomial zn of f2(z) can be written as the convolution sum

[zn]f(z)2 =

n∑
k=0

k!(n− k)!.

Denoting ak := k!(n− k)!, we note that a1 = O(a0/n), a2 = O(a1/n), and each next summand is negligible
by a factor O(n−1). This allows to write

[zn]f(z)2 ∼ 2n!(1 +O(n−1)).

Certainly, this method requires further rigorous justification for the error terms.
Second approach. Represent the function as analytic at z 6= 0. The absence of analyticity at z = 0

does not necessarily mean that the function cannot be analytically continued to the domain where the real
part of the argument is, for example, negative. The formula∫ ∞

0

e−t

1− zt
dt ∼

∞∑
n=0

n!zn
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holds by coefficient-wise differentiation at z = 0 as z < 0, z → 0.
Third approach. Decompose the generating function into an infinite sum of analytic ones. Each of the

contributions can be analysed separately, and then summed up back again. Such an approach is employed
for analysis of simple graphs near the point of phase transition: the bivariate generating function of graphs
G(z, w) with z marking vertices and w marking edges is decomposed into

G(z, w) =
∑
r>0

eU(z,w)+V (z,w)Er(z, w)

where U(z, w) is the bivariate generating function for unrooted labelled trees, V (z, w) is the bivariate generat-
ing function for unicyclic connected graphs, and Er(z, w) stands for graphs whose each connected component
has at least one edge more than the number of vertices (and represents a so-called complex component of
a graph). It turns out that such a decomposition allows to catch the main asymptotic contribution. Such
decompositions require, as a rule, noticing certain structural patterns.

This list of three approaches is not extensive, as coefficient normalising techniques such as Borel transform
can be applied. In one of the papers we develop a symbolic approach for directed graphs which consists of
introducing a normalising factor (1 +w)(

n
2), where n denotes the number of vertices of a directed graph, and

w marks the number of the directed edges.

Result 6. In paper [dPD19] together with Élie de Panafieu, we introduce the arrow product, a new gener-
ating function technique for directed graph enumeration. It provides new short proofs for previous results
of Gessel on the number of directed acyclic graphs and of Liskovets, Robinson and Wright on the number of
strongly connected directed graphs. We also obtain new enumerative results on directed graphs with given
numbers of strongly connected components and source-like components using this new technique.

We apply the third approach to study of the 2-SAT phase transition in [Dov19].

1.5.2 Catalytic equations
One particular kind of equations appearing in enumeration of walks and maps, is called catalytic equations.

Consider an example of such an equation. Let F (z, u) be the generating function of rooted planar maps
with z marking vertices and u marking the degree of the root face. Then,

F (z, u) = 1 + zu2F (z, u)2 + zu
uF (z, u)− F (z, 1)

u− 1
.

Both bivariate and univariate generating functions F (z, u) and F (z, 1) are unavailable directly from this
equation. The reason why such equations are called catalytic, is that the extra variable u is necessary to
define an equation for the generating function, but putting u = 1 does not completely eliminate this variable,
as it introduces a new term ∂uF (z, 1). Using a dedicated elimination procedure [BJ06], it is possible to prove
that the univariate generating function for maps H(z) = F (z, 1) satisfies a polynomial equation

H(z) = 1− 16z + 18zH(z)− 27z2H(z)2.

The general algebraic case with one catalytic variable has been successfully settled in [BJ06]. Algebraic
catalytic equations with two or more variables, and also differential catalytic equations present a challenging
problem.

While direct solution of the catalytic equation is unavailable, method of moments can be still applied to
obtain the distribution of parameters. One example of such an application is our paper [Bod+18a] written in
co-authorship with Olivier Bodini, Julien Courtiel and Hsien-Kuei Hwang. The catalytic differential equation
for generating function Y (z, v, w) of rooted connected maps with z marking the number of edges, v marking
root degree and w marking the number of loops, is

Y (z, v, w) = 1 + v2zY (z, v, w) + vzY (z, 1, w)Y (z, v, w) + 2vz2∂zY (z, v, w) + v2z(vw − 1)∂vY (z, v, w).

13



1.5.3 Infinite systems
The tree-like structures which appear from a generalised version of the simply-generated tree equation
f(z) = zφ(f(z)), satisfy systems of polynomial equations

F1(z1, . . . , zd) = Φ1(F1, . . . , Fn, z1, . . . , zd),

· · ·
Fn(z1, . . . , zd) = Φn(F1, . . . , Fn, z1, . . . , zd).

The analysis of such multivariate systems already became classic, typically handled through the celebrated
Drmota–Lalley–Woods theorem which is a variation of the implicit function theorem for the case of algebraic
systems of combinatorial origin.

The above theorem can be generalised for the case when the number of variables and the number of
functions is infinite, [DGM12]. Among several technical conditions required in the referenced paper is the
condition that the Jacobian operator of the infinite system can be represented as a sum of a scaled identity
operator and an operator whose power is compact. Geometrically speaking, a compact operator is the
one that can be approximated by a finite-dimensional one; an example of a non-compact operator in an
infinite-dimensional space is the identity operator.

In the paper [BBD18b] written in co-authorship with Maciej Bendkowski and Olivier Bodini, we design
a new tool for infinite systems of type

Lm(z,u) = Φm(Lm(z,u), Lm+1(z,u), z,u), m = 0, 1, 2, . . .

which arises in the enumeration of closed lambda terms. Among the listed condition is the condition of
exponential convergence which requires convergence of Φm to a limiting operator Φ∞ at an exponential
speed. Arguably, from the viewpoint of analytic combinatorics, our novel result complements the existing
result of Drmota, Gittenberger and Morgenbesser [DGM12] on infinite systems. In our formulation, the
infinite system is not required to be strongly connected. Consequently, we conjecture that the properties
of the Jacobian operator of the infinite system are not sufficient to deduce the result, in contrast with the
mentioned paper. In other words, we conjecture that the condition of exponential convergence is essential.

1.5.4 Convex optimisation
The problem of convex mathematical programming is formulated as

f0(z)→ max
z
,

fk(z) 6 0, k = 1, . . . , n,

where the functions f0(z) and fk(z) are convex in z for k = 1, . . . , n and z ∈ Rd is a d-dimensional variable.
It is known that if the functions are convex, the solution z∗ where f0(z) attains its maximum, belongs to
a convex set. Under certain regularity conditions, the solution is unique. In a more computer-interpretable
form, where the solution is required up to a real precision ε > 0, this formulation may be interpreted in
several different forms:

(i) Find zε such that ‖zε − z∗‖ < ε; the choice of the norm may vary;

(ii) Find zε such that |f0(zε)− f0(z∗)| < ε.

The first and the second formulations can be related through the matrix of second derivatives of f0(z) at
z = z∗, and also that of fk(z) near that point. Every convex programming problem can be reformulated in
a way that f0(z) := z by introducing an additional inequality constraint.

It is widely believed that non-convex problems are computationally hard to solve, while the convex ones
are polynomially easy to solve. In practice, the complexity of the solution of a convex programming problem
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depends on the curvature matrix of the problem specification and this curvature matrix norm can experience
an exponential blow-up in the external parameters of the input.

One of the results obtained in [BBD18a] is the formulation of the multiparametric Boltzmann tuning
problem as a convex optimisation problem. A peculiar feature of this reformulation is the use of a log-
sum-exp transformation which exhibits the aforementioned blow-up phenomenon. This makes any practical
implementation directly using black-box convex optimisation techniques extremely slow in some cases and
does not allow for any provable bounds. Luckily, there exists a disciplined convex programming framework
which creates a reformulation of this reformulation, and efficiently solves such programs with log-sum-exp
convex restrictions.

1.6 Structure of this thesis

The material from the following papers has been used while writing this thesis:

M. Bendkowski, O. Bodini,
S. Dovgal

“Statistical properties of lambda terms”. Accepted to
Electronic Journal of Combinatorics.
Available on-line at
https://arxiv.org/abs/1805.09419

Chapter 4
Chapter 8

S. Dovgal “The birth of the contradictory component
in random 2-SAT”, submitted. Available on-line at
https://arxiv.org/abs/1904.10266

Chapter 2
Chapter 7

O. Bodini, J. Courtiel,
S. Dovgal, H.-K. Hwang

“Asymptotic distribution of parameters in random
maps”. International Conference on Probabilistic,
Combinatorial and Asymptotic Methods for the Anal-
ysis of Algorithms (AofA 2018). Available on-line at
https://arxiv.org/abs/1802.07112

Chapter 9

É. de Panafieu, S. Dovgal “Symbolic method and directed graph enumeration”.
Accepted to EUROCOMB 2019. Available on-line at
https://arxiv.org/abs/1903.09454

Chapter 2

S. Dovgal,
V. Ravelomanana

“Shifting the Phase Transition Threshold for Random
Graphs Using Degree Set Constraints”, Latin Amer-
ican Symposium on Theoretical Informatics 2018.
Available on-line at https://arxiv.org/abs/1704.
06683

Chapter 2
Chapter 3
Chapter 6

M. Bendkowski, O. Bodini,
S. Dovgal

“Polynomial tuning of multiparametric combinatorial
samplers”, 2018 Proceedings of the Fifteenth Work-
shop on Analytic Algorithmics and Combinatorics
(ANALCO). Available on-line at https://arxiv.
org/abs/1708.01212
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This thesis is divided into two parts. In the first part we focus mostly on pure analytic combinatorics,
and on the new and existing methods developed, starting with Chapter 2 where the symbolic method is
explained. This part is necessary for understanding the source of the functional equations considered in
the thesis. In this chapter we also present a new branch of the symbolic method applicable for directed
graphs, see Section 2.4. Chapters 3 to 5 can be read in arbitrary order, as they almost do not depend upon
one another. The material related to Airy function, generalisations of saddle point lemma for graphs and
semi-large powers theorem is collected in Chapter 3. The infinite-dimensional generalisations of Drmota–
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Lalley–Woods theorem are discussed in Chapter 4. The multiparametric Boltzmann samplers and a novel
polynomial-time multiparametric tuning algorithm are described in Chapter 5.

Part II, presents several new results with the main focus on the application of already developed tools
in Part I. The results concerning graph enumeration are collected in Chapters 6 and 7. Chapter 6 contains an
application of the saddle point analysis in the context of graphs with degree constraints. Chapter 7 contains
a recent development on the structure of a random 2-SAT formula in the subcritical phase, presenting several
new connections between random graphs and the random 2-SAT. The next two chapters concern two different
combinatorial families that can be put into the tree-like category. In Chapter 8 we present the analysis of
multiple parameters of closed and plain lambda terms, applying the tools for infinite systems developed
in Chapter 4. In Chapter 9, asymptotic of the parameters in random maps is presented, using a dedicated
analysis of the non-linear Riccati equations and a combinatorial linearising transform. The concluding
section Chapter 10 contains several new applications of multiparametric Boltzmann tuning. Sections 10.6
and 10.7 are part of [BBD18a].
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Part I

Methods
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Chapter 2

Symbolic method and related
constructions
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2.4.2 Strongly connected graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

The symbolic method1 is an essential part of Analytic Combinatorics and has its roots at group theory
and theory of categories. This method, covered in details in [BLL98; FS09], allows to construct combinatorial
objects (like graphs, tilings, triangulations, sets, multisets, partitions, 2-SAT formulae, etc) by combining
them in various different ways using a set of allowed operations, and to translate these constructions into the
language of generating functions. In particular, the method allows to manipulate the generating functions
without going into the coefficient level. A spectacular advantage of the symbolic method is its reusability.
Once a “library” of specifications is written, each item of this library can then be reused to construct further
objects on the basis of already described ones.

2.1 Preliminaries
The symbolic method, or its close relative, theory of species, can be described as an algebra on combinatorial
families. The definitive treatment of the symbolic method with lots of references and wonderful examples
is the purple book [FS09]. A formal treatment of a notion of combinatorial family goes into very intricate

1The term should not be confused with another Symbolic Method from invariant theory.
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formalities which are out of the scope of the thesis [BLL98]. Nevertheless, let us provide an informal definition
which can be used throughout the text.

Definition 2.1.1 (Combinatorial family). A combinatorial family , or a combinatorial class is a denumerable
set of objects equipped with a size function. The size of each object takes a finite non-negative value, and
the number of objects of a given size is finite.

Example 2.1.1. A class of simple graphs with size defined as the number of vertices, forms a combinatorial
family, while the class of multigraphs does not, since the number of multigraphs with size one is infinite, as
such a graph may contain infinitely many loops.

In most applications, it is not sufficient to consider a uniparametric size function, as seen in the example
of multigraphs above. In such cases, a multiparametric combinatorial family is introduced.

Definition 2.1.2 (Multiparametric combinatorial family). A multiparametric combinatorial family, or a
multiparametric combinatorial class is a denumerable set of objects equipped with a vector size function.
The size of each object is a vector of non-negative integer values, and the number of objects with a given
vector size is finite.

Example 2.1.2. Consider a class of multigraphs equipped with a biparametric size function, where the size
of the multigraph is defined as a tuple (n,m), where n equals the number of vertices of the graph, and m
the number of its edges. The number of multigraphs with n labelled vertices and m labeleed edges does not
exceed

(
n+1

2

)m
, and therefore, is finite.

For combinatorial families such as graphs and multigraphs, the problem of enumeration can be posed in
many different ways, depending on the way how two given graphs are distinguished. Enumeration of labelled
graphs, for example, is different from the enumeration of graphs up to automorphisms. Such aspects require
going deeper into a structure of an object.

2.1.1 Unlabelled objects
To a family A we associate an ordinary generating function A(z) which is a formal power series defined as

A(z) :=
∑
a∈A

z|a| =
∑
n>0

anz
n, (2.1.1)

where |a| denotes the size of an object a ∈ A, and an denotes the number of object of size n from A. The nth
coefficient of a series A(z) with respect to the variable z is denoted by [zn]A(z), so A(z) =

∑
n>0([xn]A(x))zn.

For multiparametric combinatorial family A we also associate a multivariate ordinary generating function
A(z1, . . . , zd) defined as

A(z1, . . . , zd) :=
∑
a∈A

z|a|, (2.1.2)

where |a| is a vector size of a ∈ A, and zn := zn1
1 zn2

2 · · · z
nd
d . Similarly, the coefficient with vector index n

with respect to the variable z is denoted by [zn]A(z), so A(z) =
∑
n�0([xn]A(x))zn.

Given two families A and B, the sum of their respective generating functions A(z) and B(z) represents
the dijnoint union of the two families A and B. The family C := A × B is defined as the family of pairs
equipped with an additive size function

C := {(a, b) | a ∈ A, b ∈ B}, |(a, b)| := |a|+ |b|. (2.1.3)

This definition applies also to multiparametric families whose parameter vectors have the same dimensions.
The generating function of C is the product of generating functions of A and B.

A sequence operator is defined as a disjoint union of tuples formed of combinatorial object:

Seq(A) :=
⊔
k>0

Ak (2.1.4)

20



Figure 2.1: Product of combinatorial families.

where A0 is defined as a combinatorial class containing a single object ε of size zero. Assuming that A does
not contain any objects of size zero, we readily obtain a formal expression for the generating function of the
new class B := Seq(A):

B(z) =
∑
k>0

A(z)k =
1

1−A(z)
. (2.1.5)

2.1.2 Labelled objects
Intuitively, a labelled object of size n is an object carrying n distinguished nodes with labels {1, 2, . . . , n}.
The most typical objects of such type are labelled graphs, permutations, and their generalisations. The
labels can serve several purposes: one of them is to facilitate the enumeration of objects by making the
labels follow specific rules. Alternatively, labels may mark the sequence of moments in time corresponding
to some steps of a parallel computation [BGG18; Bod+18b; BGN19].

The cartesian product of labelled families is defined in a different way than in the case of the unlabelled
objects. Given two families A and B of labelled objects, a pair of labelled objects a ∈ A and b ∈ B with
respective sets of labels {1, 2, . . . , k} and {1, 2, . . . , n−k} can be formed in several different ways; in order to
form a pair, a subset of k labels of {1, 2, . . . , n} should be chosen and inserted at the positions of the labels
of a; the remaining (n − k) labels are then inserted at the positions of the labels of b. Since there are

(
n
k

)
ways to choose k labels, the number of pairs of size n is equal to

cn :=

n∑
k=0

(
n

k

)
akbn−k, (2.1.6)

where an is the number of objects of size n from A, and bn is the number of objects of size n from B. This
convolution rule requires considering a different type of generating function. To a combinatorial family A
we assign an exponential generating function

A(z) :=
∑
a∈A

z|a|

|a|!
=
∑
n>0

an
zn

n!
, (2.1.7)

where |a| denotes the size of an object a ∈ A, and an denotes the number of objects of size n from A.
As in the unlabelled case, the generating function of the disjoint unioun of two labelled classes A and B

is the sum of generating functions A(z) and B(z) of these classes. The generating function of the product
A× B is the product A(z) ·B(z) of the corresponding generating functions.

Additionally, for labelled classes three more operators are defined.

(i) the sequence operator of A is defined as the disjoint union of all k-tuples of objects from A:

B := Seq(A) :=
⊔
k>0

Ak, B(z) =
1

1−A(z)
,

where A(z) is the exponential generating function of A and B(z) is the exponential generating function
of Seq(A);
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(ii) the set operator of A, Set(A) is defined as the disjoint union of all k-sets of objects from A. If A(z) is
the exponential generating function of A, then the exponential generating function of k-set is Ak(z)/k!,
and the exponential generating function B(z) of the set operator is

B(z) =
∑
k>0

A(z)k

k!
= eA(z);

(iii) the cycle operator of A, Cyc(A) is defined as a disjoint union of all k-cycles of objects from A; each
k-cycle is a sequence of k objects from A, equivalent to itself under cyclic shifts. If B = Cyc(A) and
A(z) and B(z) are the exponential generating function of A and B, then

B(z) =
∑
k>0

A(z)k

k
= log

1

1−A(z)
.

These operators are used to construct families of labelled graphs in Section 2.2.

2.1.3 Graphic generating functions

The materials of this subsection follow [dPD19]. In this section, we introduce the arrow product, a new
generating function technique for directed graph enumeration. It provides new short proofs for previous
results of Gessel on the number of directed acyclic graphs and of Liskovets, Robinson and Wright on the
number of strongly connected directed graphs. We also obtain new enumerative results on directed graphs
with given numbers of strongly connected components and source-like components using this new technique.

Consider a sequence (an(w))∞n=0. Define the graphic generating function (GGF) (introduced in [Ges95])
of the sequence (an(w))∞n=0 as

A(z, w) :=
∑
n>0

an(w)

(1 + w)(
n
2)

zn

n!
.

To distinguish exponential generating functions (EGF) from GGF, the latter are written in bold characters.
The exponential Hadamard product of two series A(z) =

∑
n>0 an

zn

n! and B(z) =
∑
n>0 bn

zn

n! is denoted
by and defined as

A(z)�B(z) =
(∑
n>0

an
zn

n!

)
�
(∑
n>0

bn
zn

n!

)
:=
∑
n>0

anbn
zn

n!
.

All Hadamard products are taken with respect to the variable z. The Hadamard product can be used to
convert between EGF and GGF (see Corollary 2.4.1). The exponential Hadamard product should not be
confused with the ordinary Hadamard product

∑
n([zn]A(z))([zn]B(z))zn.

If A is a certain family of digraphs or graphs, we can associate to it a sequence of series (an(w))∞n=0, such
that [wm]an(w) is equal to the number of elements in A with n vertices and m directed edges. Consequently,
we can associate both EGF and GGF to the same family of digraphs or graphs.

An advantage of the symbolic method is its ability to keep track of a collection of parameters in com-
binatorial objects. The two default parameters are the numbers of vertices and edges, and the arguments
z and w of a generating function F (z, w) correspond to these parameters. As a generalization, we consider
multivariate generating functions

A(z, w,u) :=
∑
n,p

an,p(w)up
zn

n!
and A(z, w,u) :=

∑
n,p

an,p(w)up

(1 + w)(
n
2)

zn

n!
,

where u = (u1, · · · , ud) is the vector of variables, p = (p1, · · · , pd) denotes a vector of parameters, and the
notation up :=

∏
k u

pk
k is used. We say that the variable uk marks its corresponding parameter pk.

The next proposition recalls classic operations on EGFs (see [FS09]), which extend naturally to GGFs.

22



Proposition 2.1.1. Consider two digraph (or graph) families A and B. The EGF and GGF of the disjoint
union of A and B are A(z, w) + B(z, w) and A(z, w) + B(z, w). The EGF and GGF of the digraphs from
A where one vertex is distinguished are z∂z A(z) and z∂zA(z, w). The EGF of sets of digraphs from A is
eA(z,w). The EGF of pairs of digraphs (a, b) with a ∈ A and b ∈ B (relabeled so that the vertex labels of a
and b are disjoint, see [FS09]) is A(z, w) B(z, w). If a variable u marks the number of specific items in the
EGF A(z, w, u) or the GGF A(z, w, u) of the family A, then the EGF and GGF for the objects a ∈ A which
have a distinguished subset of these specific items are A(z, w, u+ 1) and A(z, w, u+ 1).

The next proposition presents our new combinatorial interpretation of the product of GGFs. It was
implicitly used by Gessel in several proofs (e.g. [Ges96]) at coefficient level, but we have not found it expressed
at the generating function level. However, a combinatorial interpretation of the exponential of GGFs can be
found in [Ges95; GS96].

Proposition 2.1.2. We define the arrow product of A and B as the family C of pairs (a, b), with a ∈ A,
b ∈ B (relabeld so that a and b have disjoint labels), where an arbitrary number of edges oriented from
vertices of a to vertices of b are added (see Figure 2.2). The GGF of C is equal to A(z, w)B(z, w).

Figure 2.2: The arrow product

Proof. Consider two digraph families A and B, with associated sequences (an(w)), (bn(w)). Then the
sequence associated to the GGF A(z, w)B(z, w) is

cn(w) = (1 + w)(
n
2)n![zn]

(∑
k

ak(w)

(1 + w)(
k
2)

zk

k!

)(∑
`

b`(w)

(1 + w)(
`
2)

z`

`!

)
=
∑
k+`=n

(
n

k

)
(1 + w)k`ak(w)b`(w).

This series cn(w) has the following combinatorial interpretation: it is the generating function (the variable
w marks the edges) of digraphs with n vertices, obtained by

• choosing a digraph a of size k in A, and a digraph b of size ` in B, such that k + ` = n,

• choosing a subset of {1, . . . , n} for the labels of a (and b receives the complementary set for its labels),

• each oriented edge (u, v) with u vertex from a, and v vertex from b, is or not added.

Hence, (cn(w))n>0 is the sequence associated to the arrow product of A and B.

2.1.4 Other types of generating functions
The key ingredient of the design of the generating function is the behaviour of the convolution of the
coefficients while taking the product of two generating functions. In principle, there is an unlimited supply
of the number of ways in which a generating function of a combinatorial class can be designed using an
appropriate weighting factor. Graphic generating function implements one of such alternative convolutions
required for very particular purposes. Related well-known example is Dirichlet generating function of a
sequence (an)n>1 which is defined as

A(s) =
∑
n>1

an
ns
,
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and the convolution rule is tightly related to number-theoretic features

A(s) ·B(s) =
∑
n>1

1

ns

∑
k|n

akbn/k.

An interesting treatment of different type of convolution products related to acyclic algebras is given
in [Han81]. An example of Knuth [Knu92] is also remarkable in this context: he considers families of
polynomials (Fk(x))k>0 such that

Fn(x+ y) =

n∑
k=0

Fk(x)Fn−k(y)

and then, relations between these polynomials closely resemble that of cycle index series.
For the enumeration of Pólya structures and unlabelled objects, cycle index series are introduced, which

are formal power series in an infinite number of arguments, whose projections contain both ordinary and
exponential generating functions [BLL98].

2.2 Constructing simple graphs and multigraphs

2.2.1 Graphs, digraphs and 2-CNF
The materials of this subsection follow [Dov19].

A simple graph G = (V,E), E ⊂ {{x, y} | x, y ∈ V, x 6= y} is a graph without loops and multiple edges,
so that every edge connects a set of two distinct vertices and for every pair of vertices there is at most one
edge connecting them. Contrary to a simple graph, a multigraph may contain an arbitrary number of loops
and multiple edges. By G(n,m) we denote the set of all simple graphs with n vertices and m edges. We say
that a graph has size n if it contains n vertices.

A simple digraph is a synonym for a simple directed graph which we define as a pair D = (V,E) of the
set of vertices V and the set of edges E ⊂ {(x, y) | x, y ∈ V, x 6= y} such that every directed edge x→ y is
represented by a pair of vertices (x, y); a simple digraph contains no loops x → x, and no multiple edges;
at the same time, any two distinct vertices x and y can have simultaneously both directed edges x→ y and
y → x between them. The unoriented projection of a simple digraph is a multigraph (possibly containing
double edges) which is obtained by dropping the orientations of the edges. We denote by D(2n,m) the set
of simple digraphs with 2n vertices and m oriented edges.

Below we give the definitions related to the 2-SAT model which contains the formulae in 2-conjunctive
normal form (2-CNF).

Definition 2.2.1 (Variables, literals and clauses). Consider n Boolean variables {x1, x2, . . . xn}, so that
xi ∈ {0, 1} for all i ∈ {1, . . . , n}. The logical negation of xi is denoted by xi. Each of {xi, xi} is called a
literal, while the two literals {xi, xi} refer to the same variable xi. We say that two literals ξ and η are
complementary if ξ = η. Two literals ξ and η are said to be strictly distinct if their underlying variables
are distinct. The 2-clauses are disjunctions of two literals, corresponding to distinct Boolean variables, in
other words, each 2-clause is of the form (ξj ∨ ηj) where ξj and ηj belong to the set of 2n possible literals
{x1, . . . , xn, x1, . . . , xn}. We do not distinguish clauses obtained by a change of the order of variables inside
a disjunction, so (ξj ∨ ηj) ≡ (ηj ∨ ξj). A 2-CNF is a conjunction of clauses, i.e. a formula of the form
∧mj=1(ξj ∨ ηj) where each of the clauses (ξj ∨ ηj) is distinct for j ∈ {1, . . . ,m}. A formula is satisfiable (SAT)
if there exists variable assignment yielding the truth value of the formula. By F(n,m) we denote the set of
2-CNF formulae with n Boolean variables and m clauses.

In different models, the distinctness condition for clauses is not required, but we show that it is not
essential for the phase transition and for our techniques. More explicitly, we require for technical reasons
that in a 2-CNF formula in our model the conditions (C1)–(C3) hold:

(C1) clauses (xi ∨ xi) are not allowed;
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(C2) clauses (xi ∨ xi) are not allowed;

(C3) all the clauses are distinct.

Each of the conditions (C1)–(C3) may be violated without changing the main results, see Remark 7.3.3.

Definition 2.2.2 (Implication digraphs). Any 2-CNF with n Boolean variables and m clauses can be
represented in the form of an implication digraph where every clause (x ∨ y) is replaced with two directed
edges (x→ y) and (y → x).

If there is a directed path from a vertex x to a vertex y in a directed graph D, we write x  y. In the
case when D is an implication digraph, we also say that a literal x implies literal y.

1

2

3

4

1

2

3

4

Figure 2.3: Implication digraph.

Definition 2.2.3 (Spine, contradictory variables and circuits). The spine of a formula F (denoted S(F ))
is the set of literals that imply their complementary literals, i.e.

S(F ) := {x | x x in F}.

A variable x is contradictory if x ∈ S(F ) and x ∈ S(F ). The contradictory component C(F ) of a formula F
is then formed of all the contradictory variables, i.e.

C(F ) := {x | x x x in F}.

A contradictory circuit is a distinguished directed path passing through x, x and x. It can be easily shown that
any variable belonging to a contradictory circuit is also contradictory (possibly via a different contradictory
circuit). It is well known and has been proven in [APT82], that a formula is satisfiable if and only if it
contains a so-called contradictory circuit, that is, there exists a literal x such that x  x and x  x.
Consequently, a formula is satisfiable if and only if its contradictory component is empty.

Example 2.2.1. Figure 2.3 contains an implication digraph of a formula (x1 ∨ x2)(x1 ∨ x2)(x1 ∨ x3)(x3 ∨
x4)(x3 ∨ x4). This formula is unsatisfiable because its implication digraph containts a contradictory circuit
1→ 2→ 1→ 3→ 4→ 3→ 1 passing through 1 and 1.

Remark 2.2.1. The contradictory component forms a set of strongly connected components such that there
is no directed path between any two strongly connected components. Indeed, if C1 and C2 are such strongly
connected components (where each variable is contradictory), and there is a path from x ∈ C1 to y ∈ C2,
then, the complementary path y  x is also a part of the implication digraph, while y ∈ C2, x ∈ C1, since
each of the strongly connected components is contradictory. Therefore, the presence of a directed path from
C1 to C2 implies a directed path from C2 to C1 and they form a single strongly connected component.

2.2.2 Symbolic method for graphs
Recall that the size of a graph (or a directed graph) is defined to be equal to the number of its vertices. In
this section, labelled graphs are considered: every vertex has a distinct label from the set {1, 2, . . . , n} where
n is the total number of vertices of the graph.
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Given a family of graphs (or directed graphs) A, we construct its corresponding exponential generating
function (EGF) which is

A(z) :=
∑
n>0

an
zn

n!
,

where an is equal to the number of graphs or digraphs of size n from A. The operator [zn] of taking nth
coefficient is then defined as [zn]A(z) = an/n!. All the indefinite integrals

∫
F (z)dz should be interpreted as∫ z

0
F (τ)dτ .
Given two families A and B, the sum of their respective generating functions A(z) and B(z) represents

the union of the two families A and B. The family C := A×B is defined as the family of labelled graphs (or
digraphs) whose vertices are partitioned into two sets such that there are no edges between the parts, the
underlying graph of the first part is from A, and the graph from the second part is from B. We can also say
that A×B is the labelled family of ordered tuples of graphs from A and B. If the respective EGFs of these
families are A(z) and B(z) then the EFG of C is A(z) ·B(z).

Consequently, if A(z) is an EGF for a graph family A not containing an empty graph, then Ak(z) is the
EGF for sequences of length k of graphs from A. Summing over all k, we obtain the EGF for all possible
sequences (possibly empty) of graphs from A, which is 1

1−A(z) . If the family A does not contain an empty
graph, then the EGF for non-ordered sequences of length k (i.e. sets) of graphs from A is A(z)k/k!. Summing
over all k, we obtain the EGF of all unordered sequences of graphs from A, which is eA(z). Finally, a oriented
cyclic composition of graphs from A has EGF

∑
k>1A

k(z)/k = log 1
1−A(z) . If a cycle is not oriented, then

the corresponding EGF is 1
2 log 1

1−A(z) .

Figure 2.4: Cyclic composition.

1

Figure 2.5: Constructing unrooted trees: the case
when the label of the root is not equal to 1.

If all the graphs in a family A are connected, then eA(z) enumerates labelled graphs whose connected
components are from A. The product of exponential generating functions for labelled graphs can be given
further interpretations: if two graph families A and B do not intersect and the graphs from these families
are connected, then the product of their EGFs enumerates graphs with two connected components, one from
A and the second from B. In the same manner, one can multiply generating functions of not necessarily
connected graph families provided that the underlying connected components corresponding to the two
families, are always distinct. Then, the product can be interpreted as a new family of graphs whose vertices
can be partitioned uniquely into two sets, and the graphs constructed on the respective sets, belong to the
first and the second family, respectively.

It is well known that the EGF T (z) for rooted trees, also known as Cayley trees, satisfies

T (z) = zeT (z) =
∑
n>0

nn−1 z
n

n!
.
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Unicyclic graphs are defined as connected graphs whose number of vertices is equal to their number of edges.
Every such graph has exactly one undirected cycle inside it and can be represented as a sequence of trees
arranged in a cycle of length at least 3, which results in the following EGF V (z):

V (z) =
1

2

∑
k>3

T (z)k

2k
=

1

2

[
log

1

1− T (z)
− T (z)− T 2(z)

2

]
.

The EGF for unrooted trees has the form U(z) = T (z) − T (z)2

2 . An elegant proof of this fact is given
in [FKP89]. We present a sketch of the proof for completeness. The label of the root of a rooted tree can be
equal to 1 or greater than 1. The generating function of rooted trees whose root has label 1 is U(z) because
an unrooted tree can be canonically rooted at vertex with label 1. Otherwise, a tree whose root label is
greater than 1 can be represented as a pair consisting of the subtree whose parent is the root and which
contains the vertex with label 1, and the remaining tree which is formed by removing the aforementioned
subtree from the initial tree. The generating function of such (unordered) tuples is T 2(z)/2. Adding up the
two cases, we obtain an identity T (z) = U(z) + T 2(z)/2.

Similarly to trees and unicycles, more complex structures can be defined. An excess of a connected
graph is equal to the number of its edges minus the number of its vertices. A connected graph with minimal
possible excess is a tree, and its excess is equal to −1. Next, a unicycle is a connected graph of excess 0. A
connected graph of excess 1 is called a bicycle.

Suppose that a connected graph G has excess r. The pruning procedure is described as repeated removal
of vertices of degree 1 until no vertices of degree 1 remain. The resulting graph is then called the 2-core or
just the core of G. Consequently, each vertex of degree 2 of G can be removed, while connecting its former
neighbours by an edge; this procedure is called cancelling . The resulting graph obtained by pruning and
cancelling is called the 3-core, or the kernel of G. After cancelling, a simple graph may gain some multiple
edges and loops, i.e. become a multigraph. Note that pruning and cancelling do not change the excess of
G. It is known (see e.g. [Jan+93]) that after pruning and cancelling, the resulting multigraph belongs to a
finite set of multigraphs with given excess r, see also Section 2.2.3.

Figure 2.6: Pruning and cancelling.

Remark 2.2.2 (The philosophy of symbolic composition). In order to illustrate the concept of symbolic
method on the example of random graphs, let us briefly consider an average height of a dangling tree of
the complex component in a critical random graph, see Figure 2.6. It is known [FO82] that the height of a
random tree with n vertices is Θ(

√
n) and that the number of vertices of a dangling tree in a critical random

graph with n vertices and n/2 edges is Θ(n1/3). However, the distribution of such trees does not coincide
with a uniform distribution on rooted trees, so their average height is not necessarily Θ(

√
n1/3) = Θ(n1/6),

as a naive heuristic would suggest. One of the ways to settle the question of the average height of a dangling
tree is to construct the generating function of subcritical graphs weighted according to the height of the
dangling trees of the complex component, using admissible constructions from the symbolic method [DR18]
and then apply the standard techniques for coefficient extraction. The resulting average tree height is of
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order Θ(log n), where the logarithm in the expression is closely related to the logarithmic form of height-
weighted generating function of trees discussed in [FO82]. A detailed treatment of this case can be found
in Section 6.6.3.

It turns out that in the subcritical and in the critical phases of the random graphs, for example, when
the number of edges m equals the number of vertices n divided by 2, the contribution of connected graphs
whose kernel is not cubic, is negligible: if a kernel is not cubic, it can be obtained as a “limiting case” from
some cubic kernel by contracting some of its edges. This corresponds to the case when the corresponding
paths in the initial graph have length zero. Heuristically, since the average length of a path on the cubic
core is of order Θ(n1/3) in the critical phase m = n/2 (see also [J LR11]), the probability that a path has
zero vertices, i.e. that the kernel is non-cubic, is of order O(n−1/3).

Turning to the case of digraphs, pruning is not defined for a strongly connected component, because the
degree of every vertex in a strongly connected component is at least 1 (except when a component consists
of an isolated vertex). Cancellation of a strongly connected component is then defined in the following way:
if a vertex has in-degree 1 and out-degree 1, it is removed and a directed edge between the in-neighbour
and the out-neighbour is added. It is easy to see that a directed multigraph obtained after a cancellation
procedure with given excess belongs to a finite sets of reduced directed multigraphs of given excess (see
also Problem 7.4.1). If in a directed multigraph every vertex has the sum of in- and out-degrees equal 3, it
is also called cubic.

2.2.3 Compensation factors

The compensation factor of a multigraph M is a certain coefficient depending on M which is required to
obtain the EGF of the family of graphs reducing to M under pruning and cancelling. While for the purposes
of the current section we take a relatively low-level classical approach, there also exists an elegant unifying
framework [dPan16] for dealing with compensation factors by introducing bivariate generating functions
which are exponential with respect to two variables.

Consider the three possible kernels of excess 1 in Figure 2.7. Each of these kernels a certain symmetry
group which acts on the set of its half-edges and vertices. Since the objects are labelled, the cardinality of
the automorphism group acting on its vertices equals n! divided by the number of distinct labelled graphs.
The remaining compensation factor can be determinted solely on the base of the incidence matrix.

1
4

1
4

1
6

Figure 2.7: Kernels of complex components of excess 1 and their respective compensation factors.

Definition 2.2.4. Consider a multigraph M with n labelled vertices and with mxy edges between vertices
with labels x and y. In particular, mxx denotes the number of loops of a vertex x, and mxy = myx.

A compensation factor κ(M) is defined as follows:

1

κ(M)
:=

n∏
x=1

2mxx
n∏
y=x

mxy!. (2.2.1)

The number of ways to construct a single multigraph M with n vertices and m edges by gluing the
half-edges of the labelled vertices can be viewed as 2mm!κ(M). The EGF of multigraphs G reducing under
pruning and cancelling to a given multigraph M is then written as

κ(M)

n!
· T (z)n

(1− T (z))m
,
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which can be obtained by substitution of trees into the corresponding sequences and vertices. For a rigorous
proof of this expression, see [Jan+93].

For contradictory components in implication digraphs, we define the compensation factors in a very
similar way.

Definition 2.2.5 (Compensation factor of sum-representations and implication digraphs). Consider a sum-
representation digraph D ∈ D◦(2n,m) and a contradictory implication digraph M with 2n conventionally
labelled vertices and 2m directed edges. Suppose that for each literals x and y there are dxy oriented edges
in D and mxy oriented edges in M between vertices with labels x and y. The compensation factors of D
and M are then defined as

1

κ(D)
:=

2n∏
x=1

2n∏
y=1

dxy!,
1

κ(M)
:=

2n∏
x=1

2n∏
y=1

mxy!!, (2.2.2)

where for even N , the double factorial is defined as N !! = 2 · 4 · · · · ·N .

For the case of simple graphs, the sum over all possible labelled kernels M with n vertices and given
excess r,

∑
M

κ(M)
n! expresses the coefficient at |µ|−3r in the probability that a random graph has a complex

component of such excess (c.f. the asymptotic probability 5/24·|µ|−3 of having a bicyclic complex component,
where 5/24 equals the sum of the compensation factors 1/4 and 1/6 divided by 2!, see also Remark 3.2.2) in
the subcritical phase, µ is defined by the relation m = n/2(1 + µn−1/3), see Chapters 6 and 7.

As we show in Theorem 7.3.1, the compensation factor for contradictory components plays exactly the
same role. The compensation factor for contradictory components has the following additional interpretation.

Lemma 2.2.1. Consider a contradictory component C with n Boolean variables and one of its sum-
representations π(C). We shall say that a sum-representation digraph π1 is isomorphic to a digraph π2 if π1

can be obtained from π2 by a permutation of Boolean variables. Then, the number of sum-representations,
both equivalent and isomorphic to π(C) is equal to n!κ(π)/κ(C).

Proof. If C1, . . . , CK are K possible isomorphic implication digraphs obtained by label permutations, then
each of the digraphs has the same number of 2m sum-representations, and therefore, each isomorphic sum-
representation is counted with multiplicity K.

Let us compute the number K of possible isomorphic digraphs obtained by label permutations. All the
edges of C come in pairs, therefore, within each pair there is a cyclic group of order 2, and there are (mxy/2)!
permutations between the (mxy/2) pairs of oriented edges between the vertices x and y. Multiplying the
orders of these groups, we obtain (mxy/2)! ·2mxy/2 = (mxy)!!. Each loop is directed, so there is no additional
factors corresponding to the loops. The number K then equal to n!/κ(C) since this is equal to the cardinality
of the automorphism group.

Example 2.2.2. As an illustration of this concept, let us compute the compensation factor of the contra-
dictory component of excess 1 from Figure 7.6. There are n = 2 Boolean variables and two multiple edges,
between, respectively, x and x, and y and y. Therefore, the compensation factor is 1/2!!2 = 1/4. The
number of isomorphic equivalent sum-representations is therefore 2! · 4 = 8, which explains the factor 1/8 in
the second summand of the expression for ξ1 in Section 7.2.3. The factor 1/4 corresponding to Figure 7.5 is
computed as 1! · 2!!2 because there is one Boolean variable and two double edges.

It is natural to expect that the concept of compensation factor of a contradictory component will prove
helpful not only for the subcritical phase of the phase transition, but will allow to give a complete description
of the transition curve. See also Section 7.4 for discussions and open questions.

2.3 Variations on graphs

2.3.1 Graphs with degree constraints
The materials of this subsection follow [DR18].
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To a given arbitrary set ∆ ⊆ {0, 1, 2, . . .}, we associate the exponential generating function (egf) ω(z):

SET∆(z) = ω(z) =
∑
d∈∆

zd

d!
. (2.3.1)

We only consider sets ∆ such that 1 ∈ ∆.
For each ` > 0, let us define `-sprouted trees: rooted trees whose vertex degrees belong to the set ∆,

except the root (see Figure 2.8), whose degree belongs to the set ∆− ` = {δ > 0: δ + ` ∈ ∆}.
Their egf T`(z) can be defined recursively

T`(z) = zω(`)(T1(z)), T1(z) = zω′(T1(z)) , ` > 0 . (2.3.2)

Lemma 2.3.1. Let U(z) be the egf for unrooted trees and V (z) the EGF of unicycles whose vertices have
degrees ∈ ∆. Then

U(z) = T0(z)− T1(z)2

2
, V (z) =

1

2

[
log

1

1− T2(z)
− T2(z)− T 2

2 (z)

2

]
, (2.3.3)

where T0(z), T1(z), and T2(z) are by (2.3.2).

T0

T1

{

∆

∆−1∆−1 ∆−1

Figure 2.8: Recursive construction of T0(z): the degree of the root of each subtree should belong to the set
∆− 1

Remark 2.3.1. The above statement for U(z) can be proven using the dissymetry theorem for trees, adapted
for the case with degree constraints (see [BLL98, Section 4.1], [FPK89]). In short, we can consider rooted
trees T0 and mark the vertex with label 1. Then we consider two cases, when this vertex is the root one, or
not. The first case corresponds to U(z) and in the second situation we can consider two subcases, whether the
label 1 belongs to the subtree induced by the first child or not (see Figure 2.9). Summarizing the argument,
we obtain

T0(z) = U(z) +
1

2
T1(z)2 .

(∆)
=

•
•

+◦1

•
•

◦1 +

•1

Figure 2.9: Variant of dissymetry theorem for unrooted trees with degree constraints

The expression for V (z) is an application of the symbolic method of EGFs in the case of undirected
cycles (cyc>3) of 2-sprouted trees, see Figure 2.4.
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Any multigraph M on n labeled vertices can be defined by a symmetric n × n matrix of nonnegative
integers mxy, where mxy = myx is the number of edges x−y inM . The compensation factor κ(M) is defined
by

κ(M) = 1

/
n∏
x=1

(
2mxx

n∏
y=x

mxy!

)
. (2.3.4)

A multigraph process is a sequence of 2m independent random vertices

(v1, v2, . . . , v2m) , vk ∈ {1, 2, . . . , n} ,

and output multigraph with the set of vertices {1, 2, . . . , n} and the set of edges {{v2i−1, v2i} : 1 6 i 6 m}.
The number of sequences that lead to the same multigraph M is exactly 2mm!κ(M).

Lemma 2.3.2. Let M be some 3-core multigraph with a vertex set V , |V | = n, having µ edges, and
compensation factor κ(M). Let µxy be the number of edges between vertices x and y for 1 6 x 6 y 6 n.
The generating function for all simple graphs G that lead to M under reduction is

κ(M)
∏
v∈V

Tdeg(v)(z)

n!
· P (M,T2(z))

(1− T2(z))µ
; (2.3.5)

P (M, z) =

n∏
x=1

(
z2µxx

n∏
y=x+1

zµxy−1(µxy − (µxy − 1)z)
)
. (2.3.6)

Corollary 2.3.1. Assume that φ1(ẑ) = 1. Near the singularity z ∼ ẑ, i.e. T2(z) ≈ 1, some of the summands
from Lemma 2.3.2 are negligible. Dominant summands correspond to graphs M with maximal number of
edges, i.e. graphs with 3r edges and 2r vertices. The vertices of degree greater than 3 can be splitted into
more vertices with additional edges. Due to [Jan+93, Section 7, Eq. (7.2)], the sum of the compensation
factors is expressed as

er0 =
(6r)!

25r32r(3r)!(2r)!
. (2.3.7)

and the sum of major summands is asymptotically

er0
T3(z)2r

(1− T2(z))3r
. (2.3.8)

The proofs of the two previous statements are postponed until the end of Remark 2.3.2.

Remark 2.3.2. Let’s give an example of application of Lemma 2.3.2, first in less technical multigraph form,
then for simple graphs.

Each multi-edge in the 3-core M corresponds to a sequence of trees in the initial graph M . Therefore,
the generating function for multigraphsM which reduce to one of the three depicted (see Figure 2.10) 3-core
multigraphs consists of 3 summands:

W∆(z) =
1

4

T4(z)

(1− T2(z))2
+

1

4

T3(z)2

(1− T2(z))3
+

1

6

T3(z)2

(1− T2(z))3
. (2.3.9)

We write T2(z) because if we attach a tree on any path, the degree of the root decreases by 2. For
the same reason there appear T3(z) and T4(z). If we evaluate W∆(z) near the pole z = ẑ, or equivalently
at T2(z) = 1, the first summand goes to ∞ slower than the second and the third. This yields asymptotic
approximation

W∆(z) =
5

24

T3(z)2

(1− T2(z))3
+O

(
1

(1− T2(z))2

)
. (2.3.10)
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1

1
4

1 2

1
4

1 2

1
6

Figure 2.10: All possible 3-core multigraphs of excess 1 and their compensation factors. The first one has
negligible contribution because it is non-cubic

The big-O notation with the generating functions means:

F (z) = O(B(z)) if [zn]F (z) 6 c[zn]B(z) (2.3.11)

for sufficiently large n, so from Eq. (2.3.10) we know that

[zn]W∆(z) ∼ [zn]
5

24

T3(z)2

(1− T2(z))3
. (2.3.12)

With simple graphs (not multigraphs) the situation is similar. For the first core we want the path to be

non-empty (because simple graphs don’t contain loops), so the generating function is
1

4

T4(z)T2(z)4

(1− T2(z))2
. For

the second graph we also require that both paths obtained from loops, contain at least one node inside:
1

4

T3(z)2T2(z)4

(1− T2(z))3
. Then, for the third core, we need at least two of the paths contain at least one node.

Collecting all the summands we obtain

W̃∆(z) =
1

4

T4(z)T2(z)4

(1− T2(z))2
+

1

4

T3(z)2T2(z)4

(1− T2(z))3
+

1

6

T3(z)2[3T2(z)2 − 2T 3
2 (z)]

(1− T2(z))3
. (2.3.13)

At z near ẑ, T2(z) = 1, so the asymptotics of this term is again

W̃∆(z) =
5

24

T3(ẑ)2

(1− T2(z))3
+O

(
1

(1− T2(z))2

)
. (2.3.14)

In the similar manner as was done in [Jan+93, Lemma 2, Eq. (9.21)], we can prove that the dominant
summand in the case of simple graphs and multigraphs is the same and equals the total compensation factor

of cubic kernels er0 times the generating function
T3(z)#nodes

(1− T2(z))#edges . We omit the factor T2(z)#edges because

it is equal to 1 (as z = ẑ).

Proof of Lemma 2.3.2. The proof is similar to [Jan+93, Lemma 2]. We need to count the junctions of
different degrees. All the paths contain vertices of degree at least 2, so we plug T2(z) into P (M, z).

Proof of Corollary 2.3.1. (From [Bol85, Chapter 2]) In a cubic multigraph each vertex has 3 half-edges that
need to be paired, there are 6r half-edges in total. The number of such pairings is (6r)!/

(
(3r)!23r

)
. In each

vertex the three half-edges can be permuted in 3! = 6 ways, so we divide by 62r to obtain finally that

the number of cubic multigraphs =
(6r)!

(3r)!23r62r
. (2.3.15)

The multiple (2r)! appears because the graph has 2r vertices and we deal with exponential generating
functions.
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2.3.2 Weakly connected directed graphs

A weakly connected digraph is a directed graph whose underlying non-oriented projection is connected. We
construct the EGFs of the analogs of the trees and unicycles in the world of directed graphs.

A rooted tree of size n has n − 1 edges, and for each of the edges there are two orientation choices.
For unrooted trees, we can take the vertex with label 1 as a canonical root, so that all of the 2n−1 edge
orientations can be also distinguished and result in distinct oriented unrooted trees. Therefore, the EGFs for,
respectively, oriented rooted and unrooted trees (i.e. directed weakly connected graphs whose non-oriented
projections are, respectively, rooted and unrooted trees) are, respectively,

T→(z) =
1

2
T (2z), and U→(z) =

1

2
U(2z) =

1

2
T (2z)− 1

4
T 2(2z). (2.3.16)

The EGF for simple digraphs whose underlying non-oriented projections are cycles of length at least 3, is ob-

tained by substitution z 7→ 2z into that of cyclic non-oriented graphs, and equals
1

2

[
log

1

1− 2z
− (2z)− (2z)2

2

]
.

In simple digraphs, it is allowed to have a circuit of length 2 on condition that it has the form x→ x→ x,
i.e. connects two vertices in both directions. Adding this case corresponds to the summand z2/2.

By substitution, it follows that the EGF for unicyclic directed graphs (directed graphs whose non-oriented
projections are unicyclic graphs) is

V→(z) =
1

2

[
log

1

1− 2T→(z)
− (2T→(z))− (2T→(z))2

2

]
+
T→(z)2

2
. (2.3.17)

The last summand is taken out intentionally. Essentially, V→(z) = V (2z) + T 2(2z)/8, where V (z) is the
previously obtained EGF for unicyclic simple graphs. EGFs for directed graphs with higher excess can be
constructed in the same way.

2.4 Acyclic and strongly connected digraphs

The materials of this section follow [dPD19]. The enumeration of two important digraph families, the Directed
Acyclic Graphs (DAGs) and the strongly connected digraphs, has been successfully approached at least since
1969. Apparently, it was Liskovets [Lis69a; Lis70] who first deduced a recurrence for the number of strongly
connected digraphs and also introduced and studied the concept of initially connected digraph, a helpful
tool for their enumeration. Subsequently, Wright [Wri71] derived a simpler recurrence for strongly connected
digraphs and Liskovets [Lis73] extended his techniques to the unlabeled case. Stanley counted labeled DAGs
in [Sta73], and Robinson, in his paper [Rob77b], counted unlabeled DAGs with a given number of sources,
which was the culmination of a series of publications he started in 1970 independently of Stanley. In the
unlabeled case, his approach is very much related to the Species Theory [BLL98] which systematises the
usage of cycle index series. Robinson also announced [Rob77a] a simple combinatorial explanation for the
generating function of strongly connected digraphs in terms of the cycle index function. Publications on the
exact enumeration of digraphs slowed down, until Gessel [Ges95], in 1995, returned to the problem with a new
approach, based on graphic generating functions. It allowed him to enumerate initially connected components
of a digraph and to immediately extend the analysis of DAGs by marking sources and sinks [Ges96]. The
first English version paper we found containing the elegant expression for the generating function of strongly
connected digraphs recalled in Theorem 2.4.1 is [Lis00]. It points to an earlier publication [Lis73] in Russian,
which contains the proof.

In this section, we consider directed graphs (digraphs) with labeled vertices without loops and multiple
edges. Two vertices u, v can be simultaneously linked by both edges u → v and v → u. We also consider
simple graphs which are undirected graphs with neither multiple edges nor loops.

We start by defining the building bricks for the symbolic method of the directed graphs.
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Figure 2.11: Symbolic method for DAG Figure 2.12: Digraphs and SCC

Proposition 2.4.1. The EGF of graphs G(z, w), GGF of digraphs D(z, w), and GGF of sets Set(z, w)
(graphs that contain no edge) are

G(z, w) = D(z, w) =
∑
n>0

(1 + w)(
n
2) z

n

n!
and Set(z, w) =

∑
n>0

1

(1 + w)(
n
2)

zn

n!
.

Proof. The sequences associated to the families of graphs, digraphs and sets are

gn(w) = (1 + w)(
n
2), dn(w) = (1 + w)n(n−1), and setn(w) = 1.

The expressions of the EGFs and GGFs follow.

Corollary 2.4.1. The EGF and GGF of a family A are linked by the relations

A(z, w) = G(z)�A(z, w) and A(z) = Set(z, w)�A(z, w).

2.4.1 Directed acyclic graphs.

The next proposition illustrates the power of the symbolic method. The first result and its proof are classic.
The second comes from [Sta73; Rob77b; Ges96].

Proposition 2.4.2. The EGF C(z, w) of connected graphs and the GGF DAG(z, w, u) of directed acyclic
graphs (DAGs) with an additional variable u marking the sources (i.e. there are no oriented edge pointing
to those vertices) are

C(z, w) = log(G(z, w)) and DAG(z, w, u) =
Set((u− 1)z, w)

Set(−z, w)
.

Proof. Since a graph is a set of connected graphs, we have, applying the symbolic method (Proposition 2.1.1),

G(z, w) = eC(z,w), so C(z, w) = log(G(z, w)).

The GGF of DAGs where each source is either marked, or left unmarked by the variable u, is DAG(z, w, u+1)
(see Proposition 2.1.1). Such a DAG is decomposed as the arrow product of a set (the marked sources) with
a digraph (Figure 2.11), so

DAG(z, w, u+ 1) = Set(zu,w)DAG(z, w).

Taking u = −1 gives 1 = Set(−z, w)DAG(z, w), so DAG(z, w) = 1/Set(−z, w). Replacing u with u − 1
gives DAG(z, w, u) = Set((u − 1)z, w)/Set(−z, w). This second proof also illustrates the translation into
the generating function world of the inclusion-exclusion principle.
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2.4.2 Strongly connected graphs.

Let us recall that the condensation of a digraph is the directed acyclic graph (DAG) obtained from it by
contracting each strongly connected component (SCC) to a vertex. The SCCs of the digraph corresponding
to sources of the condensation are called source-like SCCs.

Lemma 2.4.1. The GGF D(z, w, u, v) of digraphs where u marks the number of source-like SCCs, and v
the sum of their sizes, is equal to

D(z, w, u, v) =
(
Set(z, w)� eu SCC(zv,w)−SCC(z,w)

)
G(z, w).

Proof. Let W denote the family of sets of strongly connected components, each of them either

• marked by u, and where each vertex is either marked by v or left unmarked,

• not marked by u, but containing at least one vertex marked by v.

This construction translates into the relation

W(z, w, u, v) = eu SCC(z(v+1),w) · eSCC(z(v+1),w)−SCC(z,w).

By substituting u 7→ u+ 1 and v 7→ v+ 1 in D(z, w, u, v), we obtain the generating function of digraphs with
variables u marking distinguished source-like components, and v marking distinguished vertices in source-like
components (see Proposition 2.1.1). As illustrated by Figure 2.12, such digraphs can be represented as an
arrow product of the family W and the family of all digraphs D. On the level of generating functions, it
writes as

D(z, w, u+ 1, v + 1) = W(z, w, u, v)D(z, w) = (Set(z, w)�W(z, w, u, v)) D(z, w),

using Corollary 2.4.1. According to Proposition 2.4.1, the digraphs GGF D(z, w) is equal to the graphs EGF
G(z, w). Finally, u is replaced by u− 1 and v by v − 1 to obtain the claimed result.

The initially connected digraphs are defined as digraphs where any vertex is reachable from the vertex
with label 1 via an oriented path. Such digraphs have exactly one source-like SCC.

Lemma 2.4.2. The GGFs IC(z, w) and [u1]D(z, w, u, v) of initially connected digraphs and, respectively,
digraphs containing only one source-like SCC, whose size is marked by v, are linked by the relation

∂v=1[u1]D(z, w, u, v) = z∂zIC(z, w).

Proof. As noted in [BLL98], the derivative ∂zIC(z, w) corresponds to the class of initially connected digraphs
with omitted vertex of label 1. Multiplying by z implies inserting a node with arbitrary label in place of
it. We thus obtain digraphs reachable from a distinguished node. On the other hand, the operation v∂v
distinguishes a vertex in a source-like SCC. Taking [u1]v∂vD(z, w, u, v)|v=1 brings us to the case where
there is exactly one source-like SCC. It implies that every vertex is reachable from the distinguished one.
Therefore, the two generating functions enumerate the same family.

Our motivation for introducing initially connected digraphs is that there is a relation between their enu-
meration and the number of connected graphs ([Lis69b], proof also available in the conclusion of [Jan+93]).

Lemma 2.4.3. The GGF of initially connected digraphs is equal to the EGF of connected graphs

IC(z, w) = C(z, w) = log(G(z, w)).

Combining the previous results, we finally provide our new proof for the EGF of strongly connected
digraphs (original result from [Lis00; Lis73]).
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Theorem 2.4.1. The exponential generating function of strongly connected digraphs is equal to

SCC(z, w) = − log

(
G(z, w)� 1

G(z, w)

)
, where G(z, w) =

∑
n>0

(1 + w)(
n
2) z

n

n!
.

Proof. Combining Lemma 2.4.2 and Lemma 2.4.3, we obtain

∂v=1[u1]D(z, w, u, v) = z∂zIC(z, w) = z∂z C(z, w).

Since C(z, w) = log(G(z, w)) (see Proposition 2.4.2), the right hand-side is equal to z(∂z G(z, w))/G(z, w).
Injecting the expression of D(z, w, u, v) from Lemma 2.4.1 gives

∂v=1[u1]
(
Set(z, w)� eu SCC(zv,w)−SCC(z,w)

)
G(z, w) =

z∂z G(z, w)

G(z, w)
.

Since
∂v=1[u1]eu SCC(zv,w)−SCC(z,w) = (z∂z SCC(z, w)) e− SCC(z,w) = −z∂ze− SCC(z,w),

this relation becomes, after dividing both sides by G(z, w),

Set(z, w)� z∂ze− SCC(z,w) = −z∂z G(z)

G(z, w)2
= z∂z

1

G(z, w)

By construction, the product z∂zA(z)�B(z) is always equal to z∂z(A(z)�B(z)). Thus, the series Set(z, w)�
e− SCC(z,w) and 1/G(z, w) have equal derivatives and constant term 1, so they are equal. The neutral
element for the exponential Hadamard product is the exponential function (i.e. for any series A(z), we have
A(z)� ez = A(z)), so the inverse of Set(z, w), with respect to the Hadamard product, is G(z, w), implying

e− SCC(z,w) = G(z, w)� 1

G(z, w)
.

Applying the logarithm to both sides concludes the proof.

This formula enables fast computation of the numbers of strongly connected digraphs: O(nm log(n+m))
arithmetic operations to compute the array of SCCs with at most n vertices and at mostm edges, O(n log(n))
for the SCCs with at most n vertices without edge constraint. The following theorem is an original result.
It could be a key element to the investigation of the structure of critical digraphs.

Theorem 2.4.2. The GGF of digraphs where the numbers of source-like SCCs and all SCCs are marked
by the variables u and s is equal to

Set(z, w)� e(u−1)s SCC(z,w)

Set(z, w)� e−s SCC(z,w)
,

where SCC(z, w) has been expressed in Theorem 2.4.1.

Proof. In this proof, let D(z, w, u, s) denote the GGF of the digraph family expressed in the theorem. Then
D(z, w, u+ 1, s) is the GGF of digraphs where each source-like SCC is either marked by u or left unmarked.
Such a digraph is decomposed as the arrow product of a set of marked source-like SCCs with a digraph, so

D(z, w, u+ 1, s) =
(
Set(z, w)� eus SCC(z,w)

)
D(z, w, 1, s).

Replacing u with −1 gives

1 =
(
Set(z, w)� e−s SCC(z,w)

)
D(z, w, 1, s) so D(z, w, 1, s) =

1

Set(z, w)� e−s SCC(z,w)
.

Injecting this in the previous expression, with u replaced by u− 1, finishes the proof.

Conclusion. Many other digraph families could be enumerated using the same technique: symbolic method
enriched with the arrow product, translation from EGF to GGF using exponential Hadamard product. The
next challenge is the extraction of the coefficient asymptotics of such series. This would give access to a
precise analysis of the phase transition of digraphs, following [Jan+93].
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Chapter 3

Airy function and saddle point analysis
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3.1 Introducing Airy function
In this chapter, we focus on the extraction of coefficients of type

[zn]A(z)B(z)m (3.1.1)

when m is a function of n and m→∞ with n. There are so many things to be said about this expression!
Starting from the simplest case, when A(z) = 1, B(z) = 1 + z, we fall into the case of Binomial theorem:
[zn](1 + z)m =

(
m
n

)
. Such a simple case allows an elegant and short expression, and also a similar case

B(z) = (1 − z)−1: [zn](1 − z)−m = (−1)n
(−m
n

)
. When m is constant, the result asymptotically appears to

be a polynomial of n of degree (m− 1).
Another significant case is when m is fixed and B(z) can be represented by a fractional power B(z) ∼

(1− z)α in a Delta-domain.

Proposition 3.1.1 (Transfer theorem [FS09, Section VI.3]). Suppose that f(z/ρ) is a function analytic in
the so-called delta-domain ∆(R,φ) for some R > 1 and 0 < φ < π

2 , where

∆(R,φ) = {ζ : |ζ| < R, ζ 6= 1, arg(ζ − 1) > φ}. (3.1.2)

Suppose that as z → ρ, for z/ρ ∈ ∆(R,φ), it holds

f(z) = h(z)− g(z)

(
1− z

ρ

)−α
+O

(∣∣∣∣1− z

ρ

∣∣∣∣−β
)

(3.1.3)

where α, β ∈ C \ Z60, and h(z) and g(z) are functions analytic in |z| < R.
Then, as n→∞, the coefficients [zn]f(z) admit an asymptotic approximation in form of

[zn]f(z) ∼ g(ρ) · ρ−n · n
α−1

Γ(α)
+O

(
ρ−nnβ−1

)
(3.1.4)

where Γ: C \ Z60 → C is the Gamma function defined as Γ(z) =
∫∞

0
xz−1e−xdx.
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The proof of this case already requires a sophisticated contour in Cauchy’s integral theorem. Moving
further, considering the case whenm is linear in n and when A(z) and B(z) are entire functions, the coefficient
extraction can be heuristically described by the following scheme:

(i) Represent the coefficient [zn]A(z)B(z)m as

[zn]A(z)B(z)m =
1

2πi

∮
|z|=R

A(z)B(z)m
dz

zn+1
;

(ii) The contour integral is represented as

1

2πi

∮
|z|=R

A(z)B(z)m
dz

zn+1
=

1

2πi

∮
|z|=R

ehn,m(z) dz

z
,

where hn,m(z) := logA(z)B(z)mz−n;

(iii) The circular contour of the integration |z| = R is chosen in such a way that

h′n,m(R) = 0;

(iv) The integral is approximated by Gaussian integral

1

2πi

∮
enh(z) dz

z
∼
(

1

2πn

)1/2
1

R
√
h′′(R)

enh(R).

The case when h′′(R) turns to zero at the point where h′(R) = 0 is of special interest, as the above
approximation is not available, yielding an expression tending to infinity at an a priori unknown speed.

Therefore,

1

2πi

∮
g(z)enh(z) dz

z
∼ 1

2πi

∮
g(z) exp

(
nh(R) + nh′′′(R)

(z −R)3

6

)
dz

z
, (3.1.5)

and this is the point where Airy function

A(y) =

∫ ∞
−∞

ei(x
3/3−xy)dx

and related functions appear.
Furthermore, depending on the ratio m/n and depending on the nature of the functions A(z) and B(z) as

complex-valued functions, the circular contour |z| = R is subject to change. One possible solution is to use
a Lagrangian substitution t = z(t)et, and a different solution is to adapt the contour. The situation becomes
even more involved in case of two or more dimensions. On this account, the book [PW13] is entirely devoted
to understanding of the topology of such multi-dimensional contour integrals.

The case when Hankel integration contour should be applied is covered by semi-large powers theorem.

Proposition 3.1.2 (Semi-large powers theorem, [FS09, Theorem IX.16], [Ban+01]). Suppose that f(z/ρ)
is a function analytic in delta-domain ∆(R,φ), see Proposition 3.1.1, for some R > 1, and f(z) admits
asymptotic expansion as z → ρ for z/ρ staying in ∆(R,φ):

f(z) ∼ 1− a
√

1− z

ρ
. (3.1.6)

Then, for x in any compact subinterval of (0,+∞) the coefficient standing by zn in f(z)
k admits an asymp-

totic estimate

[zn]f(z)
k ∼ ρ−n

n
S(ax) (3.1.7)

where S(x) is the Rayleigh function satisfying

S(x) =
xe−x

2/4

2
√
π

and x =
k√
n
. (3.1.8)
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3.2 Saddle point lemma for graphs
This section follows [DR18] and [Dov19].

3.2.1 Connected graphs and weakly connected digraphs
Among many tools introduced in [Jan+93], the central one was the saddle point lemma allowing to study
the fine structure of a random graph near the point of its phase transition using the generating functions.
We give it in a slightly reformulated form without a proof.

Lemma 3.2.1 ([Jan+93, Lemma 3]). Let U(z) be the EGF of unrooted trees, T (z) be the EGF of rooted
Cayley trees, and H(z) be an entire function of z. Suppose that m = n

2 (1 + µn−1/3), and H(t) is a function
analytic at t = 1. Then, as µ→ −∞, and |µ| 6 n1/12,

n!

|G(n,m)|
[zn]

U(z)n−m

(n−m)!
eV (z) H(T (z))

(1− T (z))y
= H(1)

(
n1/3

|µ|

)y
(1 +O(|µ|−3)). (3.2.1)

Remark 3.2.1. For the subcritical phase µ→ −∞, the condition |µ| 6 n1/12 can be replaced by |µ| � n1/3,
as shown in [HR11] by a refined technical analysis of the asymptotics. We do not apply this refinement in
the current paper as it would require a certain amount of additional technical details.

In a similar context, the enumeration of connected graphs has been pushed even further in [FSS04]
using purely analytic methods. The resulting expansions are very tightly related with the Airy function
and complex contour integration in the context of the previous result [Jan+93]. The properties of the Airy
function and the phenomenon of coalescing saddles in combinatorics are out of the scope of the current
paper, and the interested reader can find additional details e.g. in [Ald97; Ban+01].

Remark 3.2.2. Let us present an exemplary application of Lemma 3.2.1 analogous to presented in [Jan+93].
If a simple graph with n vertices and m edges contains only trees and unicycles, then the number of trees is
equal to m − n, because each tree has one edge less than its number of vertices. The EGF for such graphs
is then eV (z)U(z)n−m/(n−m)!. The factor eV (z) can be then rewritten as

eV (z) =
1√

1− T (z)
e−T (z)/2−T 2(z)/4.

Whenm = n
2 (1+µn−1/3), µ→ −∞ with n, and |µ| 6 n1/12, the probability that a graph consists only of trees

and unicycles can be further refined using either the result from [Jan+93], or even further, using Lemma 3.3.1
(see below):

n!

|G(n,m)|
[zn]

U(z)n−m

(n−m)!
eV (z) = 1− 5 + o(1)

24|µ|3
.

The interpretation of the factor 5/24 is at least twofold. Formally, it appears as the second expansion
term in the saddle point lemma with 5/24 = 3y2+3y−1

6

∣∣∣
y=1/2

. At the same time, it denotes the sum of the

compensation factors of the two possible cubic bicyclic multigraphs (see Figure 2.7), also expressed as the
sum of the inverse cardinalities of their automorphism groups. Furthermore, the probability of having only
one complex component which is bicyclic, is 5

24 |µ|
−3 + O(|µ|−6), and the probability of having a complex

component of excess r is er|µ|−3r, where er = (6r)!
25r32r(3r)!(2r)! corresponds to the sum of compensation factors

of cubic multigraphs of excess r, see e.g. [Bol85, Chapter 2]. For complete asymptotic expansions in powers
of |µ|−3 we refer to Section 3.3.

We give a variant of Lemma 3.2.1 for the case of directed graphs.

Lemma 3.2.2. As µ→ −∞, and |µ| 6 n1/12,

(2n)!

|D(2n,m)|
[z2n]

U→(z)2n−m

(2n−m)!
eV→(z) H(T→(z))

(1− 2T→(z))y
= H(1/2)

(
n1/3

|µ|

)y
(1 +O(|µ|−3)) (3.2.2)

H(t) is a function analytic at t = 1/2.

39



Proof. As m
n → 1 with n going to infinity, the number of simple digraphs with 2n vertices and m edges can

be asymptotically related to the number of simple graphs with the same number of vertices and edges using
the Stirling’s formula

|D(2n,m)|
2m|G(2n,m)|

=

(
2(n2)
m

)
2m
((2n

2 )
m

) → e1/8, as n→∞.

Replacing |D(2n,m)| by its asymptotic equivalent, U→(z) and T→(z) by 1
2U(2z) and 1

2T (2z), and also V→(z)
by V (2z) + T (2z)2/8, we obtain the expression

e−1/8 (2n)!2−m

|G(2n,m)|
[z2n]

2−2n+mU(2z)2n−m

(2n−m)!
eV (2z)+T (2z)/8 H(T (2z)/2)

(1− T (2z))y
.

After substituting 2z = x, we get an additional 22n from the operator of coefficient extraction [z2n], and
therefore, all the powers of two cancel out. We proceed by applying Lemma 3.2.2 and replacing each T (x)
by 1. Since the lemma is designed for a different regime, namely m = n

2 (1 + µn−1/3), we can adapt by
replacing n 7→ 2n, µ 7→ 21/3µ. Finally, the factor e−1/8 also cancels out, because of the presence of the
multiple eT (x)/8, and the ratio of (2n)1/3 to 21/3|µ| becomes again n1/3/|µ|.

3.2.2 Graphs with degree constraints
In [DR18] we extend this lemma for the case of unrooted trees with degree constraints and `-sprouted trees
(see Section 2.3.1).

Lemma 3.2.3. Let m = rn = αn(1 + µν), where ν = n−1/3, |µ| = O(n1/12), n → ∞, and ẑ be a unique
real positive solution of φ1(ẑ) = 1. Let

C2 =
t3αẑ

2(1− α)
, C3 =

2t3αẑ

3
, t3 =

ẑω′′′(ẑ)

ω′(ẑ)
.

Then for any function τ(z) analytic in |z| 6 ẑ the contour integral encircling complex zero, admits asymptotic
representation

1

2πi

∮
(1− φ1(z))1−yenh(z;r)τ(z)

dz

z
∼ ν2−y(zt3)1−yτ(z)enh(z;α) ×B∆(y, µ)

∣∣∣
z=ẑ

, (3.2.3)

B∆(y, µ) =
1

3
C

(y−2)/3
3

∑
k>0

(
C2C

−2/3
3 µ

)k
k!Γ

(
y+1−2k

3

)
h(z; r) = logω′ − r log z + (1− r) log

(
2
ω

ω′
− z
)

The proof of the current lemma will be given below.

Corollary 3.2.1. If m = αn(1 + µn−1/3) and y ∈ R, y > 1
2 , then for any Ψ(t) analytic at t = 1 we have

n!

(n−m)!|Gn,m,∆|
[zn]

U(z)n−mΨ(T2(z))

(1− T2(z))y
=
√

2πΨ(1)A∆(y, µ)ny/3−1/6 +O(R) , (3.2.4)

B∆(y, µ) is from Lemma 3.2.3 and the error term R is given by R = (1 + |µ|4)ny/3−1/2. This function
A∆(y, µ) can be expressed in terms of A(y, µ) = AZ>0

(y, µ) introduced in [Jan+93]:

1. A∆(y, µ) = (t3ẑ)
1−y(3C3)

y−2
3 A

(
y,

2C2

3
√

(3C3)2
µ

)
= e−µ

3/6(ẑt3)1−yB∆(y, µ);
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2. As µ→ −∞, we have A(y, µ) =
1√

2π|µ|y−1/2

(
1− 3y2 + 3y − 1

6|µ|3
+O(µ−6)

)
;

3. As µ→ +∞, we have A(y, µ) =
e−µ

3/6

2y/2µ1−y/2

(
1

Γ(y/2)
+

4µ−3/2

3
√

2Γ(y/2− 3/2)
+O(µ−2)

)
.

Proof of Lemma 3.2.3 and Corollary 3.2.1. Let us prove the corollary first. We start with “Stirling” approx-
imation part. In case of classical random graphs it would be enough to apply the Stirling approximation,
but in the case of degree constraints we apply the asymptotic result of [dPR16]:

n!

(n−m)!|Fn,m,∆|
=
√

2πn
z2m

0

√
2α

p · ω(z0)n
×

exp(n log n+ (n−m) log(n−m)−m log 2m)×
exp( 1

2φ1(z0) + 1
4φ

2
1(z0))(1 +O(n−1)) .

It happens that the exponential part of Stirling and some terms that will appear in Cauchy approximation,
cancel out:

exp (n log n+ (n−m) log(n−m)−m log 2m) = e−µ
3/6 × ω(z0)n

z2m
0

2m−nenh(ẑ;α) . (3.2.5)

Let us move to the Cauchy part for obtaining formal series coefficients. After Lagrangian variable change
t = T1(z) we obtain:

[zn]
U(z)n−mΨ(T2(z))

(1− T2(z))y
=

1

2πi

∮
Ψ(T2)U(z)n−mdz

(1− T2(z))yzn+1
=

2m−n

2πi

∮
Ψ(φ1(t))(1− φ1(t))1−yenh(t;r) dt

t
.

The statement readily follows from Lemma 3.2.3.
Let us prove the lemma then. We start with specifying an integration contour, namely the circle z = ẑe−sν

where s = β + it, β > 0, t ∈ [−πn1/3, πn1/3]. We need β → 0 with n → ∞. Technically, for correct error
estimate, β can be chosen from

µ = β−1 − β , (3.2.6)

as suggested by [Jan+93]. We need to switch to contour t ∈ (−∞,+∞) with the price of exponentially small
error O(e−max(2,|µ|)n1/6/3), we omit the details of this approximation since they are already considered in
the mentioned article.

Next, there will be two variable changes. The first change of variables is z = ẑe−sν . We use an ap-
proximation for nh(z; r) near the double saddle ẑ and critical ratio α. From Lemma 3.2.5 it follows that
maximum value of |enh(z,r)| for t ∈ [−πn1/3, πn1/3] is attained for t = 0 (and also at the points 2πik

d ν where
d is a period of ∆, but we can assume without loss of generality that d = 1, because otherwise, extra terms
cancel out when we count the probability, since the denominator is given by expression from [dPR16]). Thus,
we can choose a small t0 > 0, such that nh′′(ẑ)(νt0)2 → ∞, nh′′′(ẑ)(νt0)3 → 0, and the absolute value of
integral for |t| > t0 is negligible.

Since there is a relation r = α(1 + µν), we can use a Taylor expansion for h(z, r) for z around ẑ, which
is uniform with respect to (α− r):

h(z; r) =

3∑
k=0

h
(k)
z (ẑ; r)(z − ẑ)k

k!
+O

(
(sν)4

)
. (3.2.7)

The first derivative turns to zero, the second and the third can be written as

h′′(ẑ, r) =
(φ0(ẑ)− 2r)φ′1(ẑ)

ẑ(φ0(ẑ)− 2)
=
t3(α− r)
ẑ(α− 1)

, (3.2.8)
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h′′′(ẑ, r) =
φ′0(ẑ)φ′1(ẑ)

ẑ(α− 1)
+O(µν) ∼ −4t3α

ẑ2
, (3.2.9)

hence the final approximation takes the form

nh(z; r)=nh(ẑ;α) + C2µs
2 + C3s

3 +O
(
(µ2s2+s4)ν

)
, (3.2.10)

where C2 = h′′(ẑ;α)ẑ2/2 and C3 = −h′′′(ẑ;α)ẑ3/6 are given in the formulation. We also have

(1− φ1(z))1−y = s1−yν1−y(1 +O(sν)) ,

so when s = O(n1/12), the integrand can be approximated

(1 − φ1(z))1−yenh(z,r) = ν1−ys1−yenh(ẑ;α) × eC2µs
2+C3s

3

(1 + O(sν) + O(µ2s2ν) + O(s4ν)) ,

therefore

1

2πi

∮
(1 − φ1(z))1−yenh(z;r)τ(z)

dz

z
=

1

2πi
(νẑφ′1(ẑ))1−yτ(ẑ)enh(ẑ) ×

∮
s1−yeC2µs

2+C3s
3

· (−ν)ds .

Then we perform a second change of variable s = u1/3C
−1/3
3 . We need to be careful with the contour of

integration: note that the integral doesn’t change if we take instead of t ∈ [−∞,+∞] any path Π(β), β > 0
given by

s(t) =


−e−πi/3t, −∞ < t 6 2β;

β + it sinπ/3, −2β 6 t 6 2β;

eπi/3t, 2β 6 t < +∞.
(3.2.11)

After variable transform we obtain Hankel contour Γ extending from−∞, circling the origin counterclockwise,
and returning to −∞, and ds = 1

3 (C3u
2)−1/3du.

1

2πi

∫
Π(β)

(· · · ) = ν2−y(ẑφ′1(ẑ))1−yτ(ẑ)enh(ẑ;α)C
−y/3
3 × 1

2πi

∫
Γ

uy/3eueC2µu
2/3C

−2/3
3 du · 1

3C
−1/3
3 .

Expanding the exponent
eC2C

−2/3
3 µu2/3

=
∑
k>0

(C2C
−2/3
3 µu2/3)k/k! (3.2.12)

and applying the formula for inverse Gamma function on approximate Hankel contour we obtain the final
statement.

Lemma 3.2.4. Assume that m = rn. The coefficient at zn of an egf for graphs from Fn,m,∆ given by an
equation

[zn]
U(z)n−m+q

(n−m+ q)!
eV (z)Eq(z) , (3.2.13)

can be expressed as
2m−n

2πi(n−m+ q)!

∮
enh(z;r)g(z)τ(z)

dz

z
, (3.2.14)

where the contour contains 0, the functions h(z; r), g(z) are given by

h(z; r) = r logω′(z)− r log z + (1− r) log(2ω − zω′),
g(z) = (1− φ1(z))1−y , y = 3q + 1

2

and τ(z) doesn’t have singularities in |z| 6 ẑ.
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Proof. We can do a variable change T1(z) = t 7→ z.
From the equation T1(z) = zω′(T1(z)) we obtain:

z = tω′(t)−1 7→ zω′(z)−1,

dz = (ω′)−1(1− φ1)dt,

T` = zω(`)(t) = tω(`)(t)ω′(t)−1,

T2(z) 7→ φ1(z) ,

U(z)n−m 7→ 2m−nzn−m(2ω(ω′)−1 − z)n−m

Then, we separate out the singular part:

U(z)qeV (z)Eq(z)
dz

z
= (1− T2(z))(ω′)−1︸ ︷︷ ︸

dz/dt

ω′(t)t−1︸ ︷︷ ︸
z−1

×U(z)q
√

1− T2(z)eV (z)︸ ︷︷ ︸
τ1(z)

(1− T2(z))3qEq(z)︸ ︷︷ ︸
τ2(z)

× 1

(1− T2(z))3q
· 1√

1− T2(z)
dt 7→ τ(z)g(z) ,

and the exponential one:

U(z)n−mz−n 7→ 2m−n
(

2
ω

ω′
− z
)n−m

zn−m
(
ω′

z

)n
= 2m−nenh(z;r) . (3.2.15)

In this section we mainly establish some asymptotic properties of h(z; r) around z = ẑ and r = r0 = α.
Its behaviour is important for saddle-point techniques. At arbitrary point r = α(1 + µn−1/3) its derivative
factors as

h′z(z; r) =
(φ0(z)− 2r)(φ1(z)− 1)

z(φ0(z)− 2)
, (3.2.16)

and the dominant complex root of h′z(z; r) (closest to zero) is a positive real number which is either the
solution of φ0(z) = 2r or the solution of φ1(z) = 1. Each of the equations has unique real positive solution
which we denote by Root1(r) and Root2 = ẑ, see Figure 3.1.

Figure 3.1: Configuration of roots of hz(z; r)

Lemma 3.2.5. Let z0 > 0, z0 6 min(Root1(r),Root2), the periodicity of ∆ is p. Then the function

Φ(θ; r) = Re h(z0e
iθ; r) (3.2.17)

attains its global maximums for θ ∈ [0, 2π) at p points θk = 2πk
p , k = 0, 1, . . . , p− 1.
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Proof. Denote z0e
iθ by z. Without loss of generality we will treat the case of aperiodic ω(z), since any p-

periodic function π(z) can be reduced to an aperiodic one ϕ(z) by a variable change π(z) = z`ϕ(zp). Φ(θ; r)
can be rewritten as

Φ(θ; r) = r log |ω′(z)|+ (1− r) log |2ω − zω′|+ C . (3.2.18)

We apply a version of Gibbs inequality for Kullback-Leibler divergence, also known as cross-entropy inequal-
ity: if p1, p2, q1, q2 are positive real numbers and q1 + q2 6 p1 + p2 then

p1 log
p1

q1
+ p2 log

p2

q2
> 0 . (3.2.19)

It is now sufficient to prove that

r ·
∣∣∣∣ ω′(z)ω′(z0)

∣∣∣∣+ (1− r) ·
∣∣∣∣ 2ω(z)− zω′(z)
2ω(z0)− z0ω′(z0)

∣∣∣∣ 6 1 . (3.2.20)

Note that φ0(z0) 6 2r. We first prove the inequality for r̃ = 1
2φ0(z0). Since the function ω′(z) has non-

negative coefficients, we always have |ω′(z)/ω′(z0)| 6 1, therefore if r increases, the inequality still remains
true, thus for all r > r̃ it is also true.

Substituting φ0(z0) = z0ω
′(z0)ω(z0)−1 = 2r we arrive to more simple inequality

|zω′(z)|+ |2ω(z)− zω′(z)| 6 2ω(z0) , z0 6 α . (3.2.21)

This inequality was proven by Fedor Petrov at mathoverflow [Pet16] using a beautiful geo-
metric statement.

Let γ > β > 0 and 1/β − 1/γ > 2, then for any vector z with |z| = 1

|1 + γz|+ |1− βz| 6 2 + γ − β . (3.2.22)

Let us denote z = eit. Differentiating the expression by θ and finding the zeros, we obtain

−2γ sin θ

|1 + γz|
+

2β sin θ

|1 + βz|
= 0 , (3.2.23)

which is equivalent to
|z + 1/γ| = |z − 1/β| , (3.2.24)

but the middle point of the segment [−1/γ, 1/β] has value greater than or equal to 1 provided that 1/β−1/γ >
2, so the perpendicular bisector to this segment doesn’t contain non-real points. The geometric statement
in now proven.

Let ω(z) =
∑
k>0 ckz

k. Since φ1(ẑ) = 1 and 0 < |z| 6 ẑ, the inequality φ1(z) 6 1 can be expanded as

c1 >
∑
k>2

(k2 − 1)ck+1|z|k , (3.2.25)

and we need to prove (3.2.21), which is equivalent to∣∣∣∣∣∣
∑
k>1

kckz
k

∣∣∣∣∣∣+ |2c0 + c1z − c3z3 − 2c4z
4 − . . . | 6 2c0 + 2c1|z|+ 2c2|z|2 + . . . (3.2.26)

This is reduced by applying triangle inequality for removing terms with c0 and c2 and dividing by |z|:

|c1 + 3c3z
3 + . . . |+ |c1 − c3z2 − 2c4z

3 − . . . | 6 2c1 + 2c3|z|2 + . . . (3.2.27)

Repeatedly using triangle inequalities, the above can be reduced to a family of inequalities

|(k2 − 1)|z|k + (k + 1)zk|+ |(k2 − 1)|z|k − (k − 1)zk| 6 (2(k2 − 1) + 2)|z|k , (3.2.28)

which is a partial case of the geometric statement with γ = 1
k−1 , β = 1

k+1 .
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3.3 Complete asymptotic expansion for the saddle point lemma
Let us show how a complete asymptotic expansion in powers of µ−3 can be obtained in Lemma 3.2.1.
In [Jan+93], the following formulation is given.

Lemma 3.3.1 ([Jan+93, Lemma 3]). If m = n
2 (1 +µn−1/3) and y is any real constant,MG(n,m) is the set

of all labelled multigraphs with n vertices andm edges, then, as µ→ −∞ with n while remaining |µ| 6 n1/12,

n!

|MG(n,m)|
[zn]

U(z)n−m

(n−m)!(1− T (z))y
=
√

2πA(y, µ)ny/3−1/6
(

1 +O(µ4n−1/3)
)
,

where

A(y, µ) =
1√

2π|µ|y−1/2

(
1− 3y2 + 3y − 1

6|µ|3
+O(µ−6)

)
.

Complete asymptotic expansion. In the proof, it is mentioned that in principle, it is possible to obtain
a complete asymptotic series of |µ|−3. Let us describe the procedure that can be used to compute these
coefficients.

Let α = −µ. As shown in the proof of [Jan+93, Lemma 3], the function A(y, µ) can be represented in
the form

A(y, µ) =
1

2παy−1/2

∫ ∞
−∞

(
1 +

it

α3/2

)1−y

e−t
2/2−it3/(3α3/2)dt.

In order to express A(y, µ) in the form of a complete asymptotic expansion, we introduce β := iα−3/2 and
obtain:

A(y, µ) =
1√

2π|µ|y−1/2

∫ +∞

−∞
(1 + βt)

1−y
e−βt

3/3dt ∼ 1

2π|µ|y−1/2

∑
r>0

cr(y)βr,

where (cr(y))∞r=0 are polynomials in y. The coefficient [βk] (1 + βt)
1−y

e−βt
3/3 can be expressed as the

convolution of two generating functions

[βr] (1 + βt)
1−y

e−βt
3/3 =

r∑
k=0

tk
(

1− y
k

)
(−t3/3)r−k

(r − k)!
=

r∑
k=0

(−1/3)r−k

(r − k)!
t3r−2k

(
1− y
k

)
A formal term by term integration (the series is most likely not convergent, but the expansion could be
extended up to rth term for any finite r) yields for even r

c2r(y) =
√

2π

2r∑
k=0

(−1/3)2r−k

(2r − k)!

(
1− y
k

)∫ ∞
−∞

e−t
2/2t6r−2kdt =

2r∑
k=0

(−1/3)2r−k

(2r − k)!

(
1− y
k

)
(6r − 2k − 1)!!,

where the double factorial notation is used (2n− 1)!! := 1 · 3 · · · · · (2n− 1); for odd r the principal value of
the integral equals zero, and so, c2r+1(y) = 0.

As an example, the first nontrivial term c2(y) can be computed as

c2(y) =
1/9

2!
· 5!!− 1/3

1!
· (1− y) · 3!! +

(1− y)(−y)

2
· 1!! =

3y2 + 3y − 1

6

and a factor −1 in the terms c4r+2(y) in the expansion of A(y, µ) appears because a multiple i4r+2 = −1
should be extracted from β = iα−3/2.
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Chapter 4

Infinite systems of algebraic equations
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This chapter follows [BBD18b]. In this chapter we present our technical contribution meant for dealing
with certain recursive, infinite systems of generating functions, i.e. Theorem 4.4.1. Although our results
admits broader applications than counting of closed lambda terms, for consistency, we focus only on this
application. Our proof is motivated by the papers [BGG17; GG16] where the authors consider the enumer-
ation problem of closed λ-terms without additional marking parameters. For that purpose, they construct a
series of sequences (Lm,N )m>0 that approximatem-open λ-terms with convergence rate of order O

(
1√
N

)
. In

what follows we improve this rate to an exponential one. Moreover, we abstract the considered system away
from λ-terms in the de Bruijn notation, allowing for an analysis of more general varieties of combinatorial
systems.

Remarkably, in [GG16, Section 5] the authors obtain the asymptotic estimate Θ(n−3/2ρ−n) for the number
of closed lambda terms of size n with the difference between upper and lower bounds on the constant multiple
within 10−7. Let us notice that this technique is quite different from the technique used in [BGG17].
Our approach is more similar to the former method, however admits certain improvements. Specifically,
we simplify the procedure of improved constant estimation, give a rigorous proof about the exponential
convergence rate of the constant multiple, and provide more general and simpler tools based on the properties
of the Jacobian of the limiting system (instead of exploiting the particular form of this equation in the case
of λ-terms).

4.1 Systems of algebraic equations

4.1.1 Drmota–Lalley–Woods Theorem

The following theorem, commonly known as the Drmota–Lalley–Woods theorem, is a fundamental result
obtained independently by several authors [Drm97; Woo97; Lal93] in order to establish limit laws in various
families of tree structures specified by context-free grammars. In our exposition, we reference Drmota’s
book [Drm09, Section 2.2.5], and the papers [Drm97; DGM12; PSS12; BBY10].
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Definition 4.1.1. Consider a polynomial system of equations

y = Φ(z,y,u) (4.1.1)

which is a vector notation for (yj = Φj(z, y1, . . . , ym, u1, . . . , ud)) with j ranging over 1, . . . ,m. Assume that
Φ(0,0,0) = 0. Then,

• Φ(z,y,u) is said to be non-linear if at least one of its component polynomials Φj is non-linear in one
of the formal variables y1, . . . , ym;

• Φ(z,y,u) is said to be algebraic positive if all of its component polynomials Φj have non-negative
coefficients;

• Φ(z,y,u) is said to be algebraic proper if it admits a unique formal power series solution to which the
iteration

y0(z,u) = 0 and yk+1(z,u) = Φ(z,yk(z,u),u) (4.1.2)

considered in the metric space of formal power series with valuation, converges as k → ∞, and the

Jacobian matrix
∂Φ

∂y
is nilpotent at (z,y) = (0,0).

• Φ(z,y,u) is said to be algebraic irreducible if its dependency graph (i.e. a graph whose vertices are the
integers 1, . . . ,m and there exists a directed edge k → j if yj figures in a monomial of Φk) is strongly
connected;

• Φ(z,y,u) is said to be algebraic aperiodic if each of its component solutions yj(z,1) for j = 1, . . . ,m
is aperiodic in the sense that the greatest common divisor of the pairwise differences of the set of
exponent indices of z within yj(z,1) is equal to 1.

Remark 4.1.1. The notion of algebraic properness of systems, also referred to as well-foundedness, is exten-
sively studied in [PSS12, Section 5]. As discussed in [PSS12; Joy81], the system has combinatorial meaning
only if the Jacobian is nilpotent, i.e. if the recursive definition is well-defined and allows to inductively
construct all the instances of combinatorial species.

Let us note that the condition Φ(0,0,0) = 0 is a technical assumption of the Drmota–Lalley–Woods
theorem. Pivoteau, Salvy and Soria consider, inter alia, well-founded systems for which y(0,0) 6= 0. One
possible characterisation of such systems is the condition that the limit of a suitable iterative approximation
procedure yields the solution of the initial functional system.

The assumption that a system is polynomial can be replaced by a more general assumption that the
functions are analytic at zero, see [Drm97]. For a detailed and non-trivial study of the conditions regarding
analytic functions and the configuration of the critical points in this more general case, see [BBY10].

Proposition 4.1.1 (Irreducible positive polynomial systems). Let

y = Φ(z,y,u) = (yj = Φj(z, y1, . . . , ym,u)), j = 1, . . . ,m (4.1.3)

be a non-linear polynomial system of equations which is algebraic positive, proper, and irreducible. Then
there exists ε > 0 such that all component solutions yj(z,u) admit representation of the form

yj(z,u) = hj

(√
1− z

ρ(u)
,u

)
=
∑
k>0

ck,j(u)

(
1− z

ρ(u)

)k/2
(4.1.4)

for u in a neighbourhood of 1, |z − ρ(u)| < ε and arg(z − ρ(u)) 6= 0, where ck,j(u) and ρ(u) are analytic
functions of u, and the functions hj(t,u) are analytic at (t,u) = (0,1). In addition, if the system is algebraic
aperiodic, then all yj have ρ(u) as their unique dominant singularity, and there exist constants 0 < δ < π/2
and η > 0 such that y(z,u) is analytic in a region of the form

∆ := {z : |z| < ρ(1) + η, | arg(z/ρ(u)− 1)| > δ}. (4.1.5)
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Remark 4.1.2. The above Drmota–Lalley–Woods theorem has been further generalised by Drmota, Gitten-
berger and Morgenbesser in the case of strongly connected systems with infinitely many equations [DGM12].
In their generalisation, the authors require that the Jacobian of the system (or some of its power) is a
compact operator. Alas, as the system corresponding to closed λ-terms is not strongly connected, it does
not fit into their framework. In the current section we introduce a new condition of exponential convergence
which is independent of the Jacobian and conjecture that it is crucial for obtaining the respective Puiseux
expansions of generating functions.

Proposition 4.1.2 (Differential condition for the systems of equations [DGM12, see proof of Theorem 1]).
Let y = Φ(z,y) be a non-linear system of polynomial equations yj = Φj(z, y1, . . . , ym) with j ranging over
1, . . . ,m. Assume that y = Φ(z,y) is algebraic positive, proper and irreducible. Let ρ be the common
singularity of its solution vector yj . Then, the spectral radius (largest absolute value of its eigenvalues) of

the Jacobian matrix
∂Φ

∂y
is a strictly increasing function of z on the interval [0, ρ] and is bounded from above

by 1, with the equality holding if and only if z = ρ.

4.1.2 Limit laws

Consider a bivariate generating function L(z, u) with non-negative coefficients and a sequence of random
variables (Xn)n>0 such that

L(z, u) =
∑
n,k>0

an,kz
nuk and P(Xn = k) =

an,k∑
j>0 an,j

. (4.1.6)

We say that Xn is associated with variable u. In order to understand the limiting behaviour of Xn we
investigate the probability generating function pn(u) of Xn defined as

pn(u) :=
∑
k>0

P(Xn = k)uk =
[zn]L(z, u)

[zn]L(z, 1)
. (4.1.7)

Once accessed, pn(u) proves extremely useful in establishing the traits of Xn as n tends to infinity. In
what follows, we focus on two types of limiting distributions. The first type is related to the case of a
so-called fixed singularity, which results in discrete limit law; the second type is related to so-called moving
singularity, and typically results in a Gaussian limit law.

Discrete limit laws

Proposition 4.1.3 ([FS09, Section IX.2]). Suppose that bivariate power series L(z, u) admits in a complex
neighbourhood of u = 1 a Puiseux series expansion in form of

L(z, u) = α(u)− β(u)

√
1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣) (4.1.8)

as z → ρ uniformly in delta-domain ∆(R) for some R > ρ (see Proposition 3.1.1). Then, the random variable
Xn associated with the marking variable u converges in distribution to a discrete limiting distribution with
probability generating function

p(u) = lim
n→∞

pn(u) =
β(u)

β(1)
. (4.1.9)

The corresponding mean values satisfy

lim
n→∞

EXn =
β′(1)

β(1)
. (4.1.10)
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Central limit theorem

Remark 4.1.3. In 1983, Bender and Richmond [BR83] proved a multi-dimensional variant of the central
limit theorem for probability generating functions taking the quasi-power form pn(u) ∼ A(u)B(u)n. This
line of research was later continued by Hwang [Hwa98] who established precise rates of convergence in the
one-dimensional case. The two-dimensional case by was next investigated by Heuberger [Heu07]. More
recently, in 2016, the full multi-dimensional version has been resolved by Heuberger and Kropf [HK16] using
a multi-dimensional version of the Berry–Esseen inequality. Although we do not touch on the rates of
convergence in the current section, let us mention that they can be obtained using the above results.

In order to formulate the multivariate central limit theorem, it is convenient to introduce the notion
of logarithmic derivative which enters the mean value and the covariance matrix of the resulting random
variable.

Definition 4.1.2. The logarithmic derivative of A(z, u) is given by the expression

∂

∂ log u
A(z, u) :=

∂

∂η
A(z, eη)

∣∣∣∣
η=log u

= u
∂

∂u
A(z, u). (4.1.11)

Proposition 4.1.4 (Multivariate central limit theorem, [BR83, Theorem 1]). Let (Xn)∞n=1 be a sequence
of coordinate-wise non-negative d-dimensional discrete random vectors with probability generating functions
pn(u) := E(uXn), u = (u1, u2, . . . , ud). Suppose that uniformly in a fixed complex neighbourhood of u = 1
one has

pn(u) ∼ A(u) ·B(u)n (4.1.12)

where A(u) is uniformly continuous and B(u) has a quadratic Taylor series expansion with error term
O
(∑
|uk − 1|3

)
. Assume that B(u) satisfies the following variability condition:

det

[
∂2 logB(u)

∂ log ui ∂ log uj

]
i,j

> 0. (4.1.13)

Then, the sequence of random variables Xn, after standardization, converges in law to Gaussian random
variable satisfying

Xn − EXn√
n

d→ N (0,Σ) . (4.1.14)

The mean vector and the covariance matrix satisfy

EXn ∼ n ·
∂B

∂u

∣∣∣∣
u=1

and CovXn ∼ n ·
[

∂2 logB(u)

∂ log ui∂ log uj

]
i,j

∣∣∣∣∣
u=1

. (4.1.15)

In the one-dimensional case (4.1.15) simplifies to

E(Xn) ∼ nB′(1) and V(Xn) ∼ n
(
B′′(1) +B′(1)−B′(1)

2
)
. (4.1.16)

Remark 4.1.4. Typically, when the singularity is moving (see Proposition 4.1.1) the bivariate generating
function takes the form

A(z,u) = α(u)− β(u)

√
1− z

ρ(u)
+O

(∣∣∣∣1− z

ρ(u)

∣∣∣∣) (4.1.17)

uniformly as z → ρ(u) for u in a vicinity of 1.
Consequently, the probability generating function takes form

pn(u) ∼ β(u)

β(1)

(
ρ(1)

ρ(u)

)n
. (4.1.18)
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In this form, the probability generating function satisfies the premises of the multivariate quasi-powers
theorem (see Remark 4.1.3) and so one can also obtain the speed of convergence. In our situations this speed
is typically of order O

(
1√
n

)
.

Remark 4.1.5. For convenience, we say that a random vectorXn converges in law to multivariate Gaussian
distribution with mean nµ and variance nΣ writing

Xn
d−→ N (nµ, nΣ) (4.1.19)

to denote that
Xn − nµ√

n

d−→ N (0,Σ).

4.2 Calculus techniques for formal power series
We start with some basic notation and properties of coefficient-wise inequalities on formal power series and
some geometric results on matrices of formal power series. In what follows, we denote the spectral radius of
matrix A, i.e. the largest absolute value of its eigenvalues, by r(A).

Definition 4.2.1 (Formal power series domination). We say that f(z) is dominated by g(z), denoted as
f(z) � g(z), if for each n > 0 we have [zn]f(z) 6 [zn]g(z). For multivariate formal power series

f(z) =
∑
n>0

anz
n and g(z) =

∑
n>0

bnz
n (4.2.1)

where z = (z1, . . . , zd), n = (n1, . . . , nd) and zn = zn1
1 zn2

2 . . . zndd the domination f(z) � g(z) means that for
each vector of indices n it holds an 6 bn. Certainly, if a combinatorial class F is included in a combinatorial
class G, then the generating functions f(z) and g(z) corresponding to respective classes satisfy f(z) � g(z).
The same holds for marked classes and associated multivariate generating functions. Finally, for vectors A
and B of identical (however not necessarily finite) dimension, we write A � B to denote a coordinate-wise
domination of respective components.

In real analysis, the squeeze lemma is a theorem regarding the limit of the sequence which is upper- and
lower-bounded by two sequences with the same limit value. The following statement is a variant of this
lemma, stated in the context of formal power series admitting coefficient asymptotics suitable for analysis
of corresponding limit laws, see Section 4.1.2.

Lemma 4.2.1 (Squeeze lemma for formal power series). Let z ∈ C and u = (u1, . . . , ur) ∈ Cr. Assume that
f(z,u), (hm(z,u))m>0, and (gm(z,u))m>0 are multivariate formal power series in (z,u) with non-negative
coefficients, such that for every n and m, the functions

[zn]f(z,u), [zn]hm(z,u) and [zn]gm(z,u) (4.2.2)

are polynomials in u.
Moreover, assume that the following conditions hold:

• for each m > 0, we have
hm(z,u) � f(z,u) � gm(z,u) (4.2.3)

in the sense of multivariate formal power series domination;

• there exists a sequence of real positive numbers Cn and functions
(
Am(u)

)
m>0

,
(
Am(u)

)
m>0

, B(u)

analytic in a common neighbourhood of u = 1, such that uniformly for m > 0 and uniformly in a fixed
complex vicinity of u = 1, it holds

lim
n→∞

[zn]hm(z,u)

CnAm(u)B(u)n
= 1 and lim

n→∞

[zn]gm(z,u)

CnAm(u)B(u)n
= 1; (4.2.4)
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• there exists a function A(u) analytic near u = 1 such that A(1) 6= 0 satisfying uniformly in a complex
vicinity of u = 1

lim
m→∞

Am(u) = lim
m→∞

Am(u) = A(u). (4.2.5)

Then, uniformly in a complex vicinity of u = 1, as n→∞:

[zn]f(z,u) ∼ CnA(u)B(u)n. (4.2.6)

Proof. We divide the proof into two parts. We start with showing that the statement holds for vectors u
whose components are real positive numbers. Next, we extend this property onto all complex components
of u.

First, take u ∈ Rr in the vicinity where the functions Am(u), Am(u), B(u) are analytic. Then, follow-
ing (4.2.3) and (4.2.4), for every positive ε there exists N := N(ε), independent of m and u, such that

∀n > N Am(u)(1− ε) 6 [zn]f(z,u)

CnB(u)n
6 Am(u)(1 + ε). (4.2.7)

Taking the limit with respect to m we note that condition (4.2.5) guarantees that for arbitrary small ε > 0
and sufficiently large N (again, independent of u) we have

∀n > N A(u)(1− ε) 6 [zn]f(z,u)

CnB(u)n
6 A(u)(1 + ε). (4.2.8)

In other words, for values of u ∈ Rr within a fixed vicinity of u = 1 it holds

[zn]f(z,u) ∼ CnA(u)B(u)n. (4.2.9)

Now, let us consider u ∈ Cr. Note that since for each n,m > 0 the formal power series [zn]f(z,u),
[zn]hm(z,u) and [zn]gm(z,u) are polynomials in u, they are analytic in Cr. Moreover, as ψn,m(u) :=
[zn]f(z,u)−[zn]hm(z,u) is a polynomial with non-negative coefficients, for every u ∈ Cr we have |ψn,m(u)| 6
ψn,m(|u|) and, consequently,∣∣[zn]f(z,u)− [zn]hm(z,u)

∣∣ 6 [zn]f(z, |u|)− [zn]hm(z, |u|). (4.2.10)

After dividing both parts by Cn|A(u)||B(u)n| we obtain∣∣∣∣ [zn]f(z,u)

CnA(u)B(u)n
− [zn]hm(z,u)

CnA(u)B(u)n

∣∣∣∣ 6 [zn]f(z, |u|)
Cn|A(u)||B(u)n|

− [zn]hm(z, |u|)
Cn|A(u)||B(u)n|

. (4.2.11)

Following condition (4.2.4) and the estimate (4.2.9) for u ∈ Rr, we note that for every ε > 0 there exists
N := N(ε) independent of m and u, such that for all n > N we further have∣∣∣∣ [zn]f(z,u)

CnA(u)B(u)n
−
Am(u)

A(u)

∣∣∣∣ 6 A(|u|)−Am(|u|)
|A(u)|

· B(|u|)n

|B(u)n|
+ ε. (4.2.12)

Since ε does not depend on m, we can take the limit with respect to m. Given condition (4.2.5) we note
that for sufficiently large n we have ∣∣∣∣ [zn]f(z,u)

CnA(u)B(u)n
− 1

∣∣∣∣ 6 ε. (4.2.13)

Hence, uniformly in a fixed complex vicinity of u = 1

lim
n→∞

[zn]f(z,u)

CnA(u)B(u)n
= 1, (4.2.14)

which finishes the proof.
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Remark 4.2.1. Using the same technique, higher-order error terms can also be transferred, provided that
the function is squeezed between two sequences of formal power series with known Puiseux expansions.
In such a situation, higher-order terms correspond to coefficients obtained from the summands of Puiseux
expansion

f(z,u) ∼
∑
k>0

ck(u)

(
1− z

ρ(u)

)k/2
. (4.2.15)

The next lemma is a formal power series analogue of Lagrange’s mean value theorem.

Lemma 4.2.2 (Mean value lemma for formal power series). Let f(z) and g(z) be two formal power series
such that f(z) � g(z). Assume that Ψ(t) =

∑
n>0 ψnt

n is a formal power series with non-negative coefficients.
Then,

Ψ(g(z))−Ψ(f(z)) � (g(z)− f(z)) Ψ′(g(z)). (4.2.16)

Likewise, the statement holds for vectors of formal power series in a coordinate-wise manner.

Proof. Coefficient-wise subtraction of the left-hand side of (4.2.16) yields

Ψ(g(z))−Ψ(f(z)) =
∑
n>0

ψn (g(z)
n − f(z)

n
)

= (g(z)− f(z))
∑
n>0

ψn

(
n−1∑
i=0

g(z)
i
f(z)

n−i−1

)
� (g(z)− f(z))

∑
n>0

ψnng(z)
n−1

= (g(z)− f(z)) Ψ′(g(z)).

(4.2.17)

The first two equalities hold as a consequence of formal power series composition and the identity an−bn =
(a− b)

∑n−1
i=0 a

ibn−i−1. The subsequent domination follows from the assumption that f(z) � g(z).

4.3 Forward recursive systems
The following definition of forward recursive systems encapsulates the general, abstract features of the infinite
systems that we consider in the current section. Core characteristics of the infinite system corresponding
to closed λ-terms are abstracted and divided into three general conditions which are sufficient to access the
asymptotic form of respective coefficients.

Definition 4.3.1 (Forward recursive systems). Let z be a formal variable and u = (u1, . . . , ur) be a vector
of r formal variables. Consider infinite sequences

(
L〈m〉

)
m>0

and
(
K〈m〉

)
m>0

of d-dimensional vectors

L〈m〉 =
(
L
〈m〉
1 , . . . , L

〈m〉
d

)
and K〈m〉 =

(
K
〈m〉
1 , . . . ,K

〈m〉
d

)
(4.3.1)

consisting of formal power series L〈m〉i (z,u) and K〈m〉i (`1, `2, z,u) where `1 and `2 are vectors of d variables
and i = 1, . . . , d.

Assume that
(
L〈m〉

)
m>0

and
(
K〈m〉

)
m>0

satisfy

L〈m〉 = K〈m〉
(
L〈m〉,L〈m+1〉, z,u

)
. (4.3.2)

Then, we say that the system (4.3.2) is forward recursive.
Furthermore, consider a limiting system in form of

L〈∞〉 = K〈∞〉
(
L〈∞〉,L〈∞〉, z,u

)
(4.3.3)
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where L〈∞〉 and K〈∞〉 are d-dimensional vectors of formal power series L〈∞〉i (z,u) and K
〈∞〉
i (`1, `2, z,u),

respectively, and moreover all series K〈∞〉i are analytic at (`1, `2, z,u) = (0,0, 0,1). In this setting, we say
that the system (4.3.2):

1. is infinitely nested if K〈m〉(`1, `2, z,u) � K〈∞〉(`1, `2, z,u) for each m > 0;

2. tends to an irreducible context-free schema if it is infinitely nested and its corresponding limiting
system (4.3.3) satisfies the premises of the Drmota–Lalley–Woods theorem (see Proposition 4.1.1) i.e. is
a polynomial, non-linear system of functional equations which is algebraic positive, proper, irreducible
and aperiodic;

3. is exponentially converging if there exists a vector A(z,u) = (A1(z,u), . . . , Ad(z,u)) and a function
B(z,u) such that:

• for each m > 0 we have

K〈∞〉(L〈∞〉,L〈∞〉, z,u)−K〈m〉(L〈∞〉,L〈∞〉, z,u) � A(z,u) ·B(z,u)
m

; (4.3.4)

• A1(z,u), . . . , Ad(z,u) and B(z,u) are analytic functions in the disk |z| < ρ+ε for some ε > 0 and
u = 1 where ρ is the dominant singularity of the limit system (4.3.3) at point u = 1. Moreover,
at u = 1 we have |B(ρ(u),u)| < 1 where ρ(u) is the singularity of the limiting system (4.3.3).

Example 4.3.1. Consider the infinite system corresponding to m-open λ-terms, see (8.1.3). Recall that the
sequence (Lm(z))m>0 of respective generating functions satisfies

L0(z) = zL1(z) + zL0(z)
2

L1(z) = zL2(z) + zL1(z)
2

+ z

· · ·
Lm(z) = zLm+1(z) + zLm(z)

2
+ z

1− zm

1− z
· · ·

(4.3.5)

Let us show that (4.3.5) is an infinitely nested, forward recursive system which tends to an irreducible
context-free schema of L∞(z) at an exponential convergence rate. Here, each intermediate system L〈m〉

consists of a single equation defining Lm(z). Note that there are no additional marking variables u. The
vectors K〈m〉 are one-dimensional and the corresponding functions Km are given by

Km(`1, `2, z) := z`2 + z`21 + z
1− zm

1− z
. (4.3.6)

The limiting system L∞(z) satisfies

L∞(z) = zL∞(z) + zL∞(z)2 +
z

1− z
. (4.3.7)

One can easily check that it also satisfies the premises of Proposition 4.1.1; hence, the considered sys-
tem (4.3.5) tends to an irreducible context-free schema. Since the trivariate formal power seriesK∞(`1, `2, z)−
Km(`1, `2, z) has non-negative coefficients, the system (4.3.5) is also infinitely nested. Moreover, the differ-
ence between the limiting equation and the mth equation computed at `1 = `2 = L∞(z) is equal to zm+1

1−z
and corresponds to a subset of de Bruijn indices. Certainly, as m tends to infinity, this difference converges
to zero exponentially fast.

Given the combinatorial relation between m-open λ-terms and plain terms, we readily obtain the re-
quested condition Lm(z) � L∞(z). However, for arbitrary forward recursive systems (8.3.2) establishing
that L〈m〉 � L〈∞〉 is no longer so straightforward. In what follows, we prove that for this inequality to hold
it is sufficient that the limiting system is well-founded.
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Lemma 4.3.1. Let S be an infinitely nested, forward recursive system (4.3.2). Assume that the coefficients
of the formal power series K〈∞〉(`1, `2, z,u) corresponding to the limiting system are non-negative and the
limiting system (4.3.3) is well-founded (i.e. algebraic proper in the sense of Definition 4.1.1) and has a
non-zero solution L〈∞〉(z,u). Finally, assume that K〈∞〉(0,0, 0,u) = 0. Then,

L〈m〉(z,u) � L〈∞〉(z,u). (4.3.8)

Proof. Consider the vectorsL = (L〈0〉,L〈1〉, . . .) andL+ = (L〈∞〉,L〈∞〉, . . .) consisting of aptly concatenated
and flattened systems

(
L〈m〉

)
m>0

and L〈∞〉, respectively. Intuitively, L and L+ are in a sense vectors of
vectors, but for convenience we call them just vectors. Note that both L(z,u) and L+(z,u) satisfy

L(z,u) = Φ(L(z,u), z,u)

L+(z,u) = Ψ(L+(z,u), z,u)
(4.3.9)

where

Φ(λ, z,u) = (K〈0〉(λ0,λ1, z,u),K〈1〉(λ1,λ2, z,u), . . .)

Ψ(λ, z,u) = (K〈∞〉(λ0,λ1, z,u),K〈∞〉(λ1,λ2, z,u), . . .)
(4.3.10)

with λ taken as a flattening concatenation of d-dimensional vectors of free variables (λ0,λ1, . . .).
Since for each m we have K〈m〉(λm,λm+1, z,u) � K〈∞〉(λm,λm+1, z,u) it also holds

Φ(λ, z,u) � Ψ(λ, z,u). (4.3.11)

The idea of the current proof is to consider the difference L+(z,u) − L(z,u) and show that it is non-
negative. According to (4.3.9) this difference can be represented as

L+(z,u)−L(z,u) = Ψ(L+(z,u), z,u)−Φ(L(z,u), z,u). (4.3.12)

Since Ψ(λ, z,u) � Φ(λ, z,u), the formal power series Ψ can be represented as a sum Ψ(λ, z,u) =
Φ(λ, z,u) + Θ(λ, z,u) with Θ(λ, z,u) � 0. Hence, the difference (4.3.12) becomes

L+(z,u)−L(z,u) = Θ(L+, z,u) +
(
Φ(L+, z,u)−Φ(L, z,u)

)
. (4.3.13)

At this point, our tactic is to apply an analog of the mean value theorem to the right-hand side difference
and obtain an equation of the form

L+(z,u)−L(z,u) = Θ(L+, z,u) + J ·
(
L+ −L

)
(4.3.14)

and consequently
L+(z,u)−L(z,u) = (I−J )−1Θ =

∑
k>0

J kΘ � 0 (4.3.15)

where J is some non-negative operator whereas I is the corresponding identity. The rest of the proof is
dedicated to formalising the above approach, in particular showing that the Neumann series

∑
k>0 J

k is
well-defined.

We start by noticing that due to the well-foundedness of the limiting system (4.3.3) we have L+(0,u) = 0.
Since Φ(λ, z,u) � Ψ(λ, z,u) there also holds Φ(0, 0,u) = 0. Furthermore, since there exists a unique formal
power series solution of the equation L(0,u) = Φ(L(0,u), 0,u) and L(0,u) = 0 satisfies this equation, we
note that indeed L(0,u) = 0.

Consider two formal infinite-dimensional variables λ and λ+ which are both flattened concatenations
of d-dimensional vectors of free variables. Let us show that the difference Φ(λ+, z,u) − Φ(λ, z,u) can be
represented as

Φ(λ+, z,u)−Φ(λ, z,u) = J (z,u,λ,λ+)(λ+ − λ) (4.3.16)
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where J = J (z,u,λ,λ+) is some non-negative operator (i.e. infinite-dimensional matrix). Moreover, after
substituting λ = L(z,u) and λ+ = L+(z,u) into J , there exists a non-negative integer K > 0 such that
JK is element-wise divisible by z. Since we have established that both L+(0,u) = 0 and L(0,u) = 0, the
latter condition is equivalent to the nilpotency of the operator J evaluated at λ = L(z,u), λ+ = L+(z,u)
and z = 0.

Note that the function Φ(λ, z,u) is a sum of (finite) monomials in formal variables (λ, z,u); although λ
is infinitely-dimensional, each of the monomials involves only finitely many factors of λ. Let us consider the
difference of arbitrary monomials in form of

xn1
1 · · ·x

nk
k − y

n1
1 · · · y

nk
k . (4.3.17)

Note that we can rewrite (4.3.17) as

xn1
1 · · ·x

nk
k − y

n1
1 · · · y

nk
k = (xn1

1 · · ·x
nk
k − y

n1
1 xn2

2 · · ·x
nk
k )

+ (yn1
1 xn2

2 · · ·x
nk
k − y

n1
1 yn2

2 xn3
3 · · ·x

nk
k ) + · · ·

+
(
yn1

1 · · · y
nk−1

k−1 x
nk
k − y

n1
1 · · · y

nk
k

)
= (x1 − y1)xn2

2 · · ·x
nk
k

(xn1
1 − y

n1
1 )

x1 − y1

+ (x2 − y2) yn1
1 xn3

3 · · ·x
nk
k

(xn2
2 − y

n2
2 )

x2 − y2
+ · · ·

+ (xk − yk) yn1
1 · · · y

nk−1

k−1

(xnkk − y
nk
k )

xk − yk
.

(4.3.18)

Note that each factor
(xnii − y

ni
i )

xi − yi
in the final sum is in fact a polynomial

ni−1∑
j=0

xjiy
ni−j−1
i . Therefore, the

difference xn1
1 · · ·x

nk
k − yn1

1 · · · y
nk
k can be represented as a scalar product of x− y := (xi − yi)ki=1 and a

vector of formal power series in (x,y). Furthermore, the difference Φ(λ+, z,u)−Φ(λ, z,u) consists of the
sums of such differences of monomials multiplied by appropriate non-negative coefficients. Grouping these
differences together, we obtain the desired form (4.3.16).

Next, as an intermediate step, let us now show that the Jacobian operator
∂Ψ

∂λ
(λ, z,u) is nilpotent at

(z,λ) = (0,0). For convenience, set

J1(u) :=
∂K〈∞〉(`1, `2, z,u)

∂`1

∣∣∣∣∣ z=0
`1=0
`2=0

and J2(u) :=
∂K〈∞〉(`1, `2, z,u)

∂`2

∣∣∣∣∣ z=0
`1=0
`2=0

. (4.3.19)

Then,

J1(u) + J2(u) =
∂K〈∞〉(`, `, z,u)

∂`

∣∣∣∣∣
z=0
`=0

. (4.3.20)

Since the limiting system is well-founded (see Definition 4.1.1) the sum J1(u) + J2(u) is nilpotent. Moreover,
since each of the matrices J1(u) and J2(u) is non-negative, there exists K such that all the summands of
the expanded binomial (J1(u) + J2(u))K are zero.

On the other hand, note that following the definition of Ψ(λ, z,u) its Jacobian operator
∂Ψ

∂λ
evaluated

at (z,λ) = (0,0) admits the following block structure:

∂Ψ

∂λ

∣∣∣∣
z=0
λ=0

=


J1 J2

J1 J2

J1 J2

. . .

 . (4.3.21)
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If we take the Kth power of this operator, it will have a block structure in which each block element consists
of a sum of certain summands from the binomial expansion of (J1+J2)K . Since the latter is a zero matrix and
the summands corresponding to the blocks are non-negative and dominated by (J1+J2)K , all such summands

are also zero. This implies that the Jacobian operator
∂Ψ

∂λ
(λ, z,u) evaluated at (z,λ) = (0,0) is nilpotent

with a nilpotence index at most K, i.e. the nilpotence index of the Jacobian operator
∂K〈∞〉(`, `, z,u)

∂`
evaluated at (z, `) = (0,0).

Now, let us show that the infinitely-dimensional matrix J (z,u,λ,λ+) evaluated at (z,λ,λ+) = (0,0,0)

is equal to the Jacobian operator
∂Φ

∂λ
evaluated at (z,λ) = (0,0). Recall that the operator J is determined

by the differences of monomials in Φ(λ+, z,u) − Φ(λ, z,u). Monomials that have degree zero in λ or λ+

cancel out because they depend only on the arguments z and u. Likewise, monomials with degree two or
more in λ or λ+ vanish after the substitution λ = λ+ = 0. The only type of the terms that do not turn to
zero upon substitution λ = λ+ = 0 are terms coming from differences of monomials linear in λ or λ+. Note
that such terms have the same contribution to the infinitely-dimensional matrix J as the corresponding

terms of the infinitely-dimensional matrix
∂Φ

∂λ
. Hence, J (z,u,λ,λ+) evaluated at (z,λ,λ+) = (0,0,0) is

indeed equal to the Jacobian operator
∂Φ

∂λ
evaluated at (z,λ) = (0,0).

The nilpotence of J evaluated at (z,λ,λ+) = (0,0,0) follows from the fact that Ψ(λ, z,u) is domi-

nating Φ(λ, z,u), and therefore, the corresponding Jacobian operator
∂Ψ

∂λ
(respectively its Nth power) is

dominating the operator
∂Φ

∂λ
(respectively its Nth power). For this reason, the latter Jacobian operator

∂Φ

∂λ
, evaluated at (z,λ,λ+) = (0,0,0) is nilpotent with the nilpotence index at most the corresponding

nilpotence operator of the former Jacobian operator
∂Ψ

∂λ
.

And so, we have established that J evaluated at λ = L(z,u), λ+ = L+(z,u) and z = 0 is nilpotent.
Equivalently, it meas that after substituting λ = L(z,u) and λ+ = L+(z,u) into J there exists a non-
negative integer K > 0 such that JK is element-wise divisible by z. Consequently, each coefficient in z of
the formal sum

∑
j>0 J

j is finite. Indeed, for each integer N > 0, the coefficient at zN in this formal series
is a sum of coefficients at zN in the finite sum

∑K·N
j=0 J j . Moreover, since J is non-negative, this sum is

also non-negative. Finally, this infinite formal series is equal to (I −J )−1 where I is the identity operator
of appropriate dimension.

Remark 4.3.1. The condition that K〈∞〉(0,0, 0,u) = 0 can be omitted but we keep it for the simplicity
of the proof. For the above proof, it is enough to guarantee that each coefficient in z of the infinite formal
sum

∑
j>0 J

j is finite, which is equivalent to saying that some power of J is divisible by z. More details
on well-founded systems can be found in [PSS12].

4.4 Coefficient transfer for infinite systems

Finally, we give our main theorem on the transfer of coefficients for infinitely nested forward-recursive
systems.

Theorem 4.4.1. Let S be an infinitely nested, forward recursive system (4.3.2) which tends to an irreducible
context-free schema at an exponential convergence rate. Then, the respective solutions L〈m〉j (z,u) of S admit
for each m > 0 an asymptotic expansion of their coefficients as n→∞ in form of

[zn]L
〈m〉
j (z,u) ∼ [zn]

∑
k>0

c
〈m〉
j,k (u)

(
1− z

ρ(u)

)k/2
(4.4.1)
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where ρ(u) is the dominant singularity of the corresponding limiting system (4.3.3) and the coefficients
c
〈m〉
j,k (u) are analytic at u = 1. Furthermore, ρ(u) is analytic near u = 1.

The coefficients c〈m〉j,k (u) can be approximated by taking first (M−1) equations from (4.3.2) and replacing
the Mth equation by its following limit variant:

L〈M〉 = K〈∞〉
(
L〈M〉,L〈M〉, z,u

)
. (4.4.2)

Such a truncated system can be solved recursively. Consequently, the coefficients of respective Puiseux
expansions (4.4.1) are estimated with an error which is exponentially small in M .

Remark 4.4.1.

• The condition that the system S tends to an irreducible context-free schema can be replaced by a
weaker condition asserting that the limiting system (4.3.3) admits a suitable Puiseux expansion.

• Instead of limiting systems with square-root type singularities, it is also possible to consider rational
systems or other types of systems. The same set of conditions is sufficient to establish the transfer of
behaviours around the dominant singular point.

Proof. (Theorem 4.4.1) We divide the proof into three conceptual parts.

1. First, we show that each component of the difference vector L〈∞〉(z,u) − L〈m〉(z,u) can be upper
bounded by a Puiseux series expansion whose coefficients decay exponentially fast as m tends to
infinity;

2. Next, we show that if for m > 1 there exist coordinate-wise upper and lower bounds

L〈m〉(z,u) � L〈m〉(z,u) � L〈m〉(z,u), (4.4.3)

then the vector of functions L〈m−1〉(z,u) obtained from the infinite system S admits upper and lower
bounds L〈m−1〉(z,u) and L〈m−1〉(z,u) satisfying

L〈m−1〉(z,u)−L〈m−1〉(z,u) �R(z,u)
(
L〈m〉(z,u)−L〈m〉(z,u)

)
(4.4.4)

for some matrix R(z,u) with spectral radius satisfying r(R(z,u)) 6 1 for z ∈ [0, ρ(u)] where ρ(u) is
the dominant singularity of L〈∞〉(z,u);

3. Finally, we combine two previous results and prove that the difference between the Puiseux coefficients
of upper and lower bounds of L〈m〉(z,u) can be reduced to zero.

First part. According to Lemma 4.3.1 we have L〈m〉 � L〈∞〉. Following the functional definitions of L〈∞〉
and L〈m〉 from the infinite system of equations, their difference can be represented as

L〈∞〉 −L〈m〉 = K〈∞〉(L〈∞〉,L〈∞〉, z,u)−K〈m〉(L〈m〉,L〈m+1〉, z,u). (4.4.5)

For convenience, henceforth we omit the arguments z and u. Moreover, K〈∞〉 and K〈m〉 become functions
of two vector arguments

K〈∞〉 : Cd × Cd → Cd and K〈m〉 : Cd × Cd → Cd. (4.4.6)

In addition, we use the nabla notation to denote the Jacobian operator

∇xK(x,y) =

(
∂

∂x1
K, . . . , ∂

∂xd
K
)

and ∇yK(x,y) =

(
∂

∂y1
K, . . . , ∂

∂yd
K
)
. (4.4.7)
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We start with the following subtraction-addition trick. Each component of the vector difference is eval-
uated through Lemma 4.2.2 (mean value lemma for formal power series) and then upper-bounded by the
value of the functional K〈∞〉 at L〈∞〉. Specifically,

L〈∞〉 −L〈m〉 = K〈∞〉(L〈∞〉,L〈∞〉)−K〈∞〉(L〈m〉,L〈∞〉) + K〈∞〉(L〈m〉,L〈∞〉)

−K〈∞〉(L〈m〉,L〈m+1〉) + K〈∞〉(L〈m〉,L〈m+1〉)−K〈m〉(L〈m〉,L〈m+1〉)

� ∇xK〈∞〉(x,y)
∣∣∣
x=L〈∞〉

y=L〈∞〉

(L〈∞〉 −L〈m〉) + ∇yK〈∞〉(x,y)
∣∣∣
x=L〈∞〉

y=L〈∞〉

(L〈∞〉 −L〈m+1〉)

+
(
K〈∞〉(L〈m〉,L〈m+1〉)−K〈m〉(L〈m〉,L〈m+1〉)

)
.

Since K〈m〉 � K〈∞〉, the final difference in the above sum is a vector of formal power series with non-negative
coefficients. Consequently, the last summand can be bounded by K〈∞〉(L〈∞〉,L〈∞〉) −K〈m〉(L〈∞〉,L〈∞〉).
By the condition of exponential convergence, this difference can be even further bounded by a vector of
exponentially decaying functions A(z,u)(B(z,u))m. For brevity, set

∂1K := ∇xK〈∞〉(x,y)
∣∣∣
(x,y)=(L〈∞〉,L〈∞〉)

and ∂2K := ∇yK〈∞〉(x,y)
∣∣∣
(x,y)=(L〈∞〉,L〈∞〉)

.

Note that ∂1K, ∂2K ∈ Cd×d. Now, the upper bound on L〈∞〉 −L〈m〉 can be stated as

(L〈∞〉 −L〈m〉) � A(z,u)B(z,u)
m

+ ∂1K · (L〈∞〉 −L〈m〉) + ∂2K · (L〈∞〉 −L〈m+1〉) (4.4.8)

or, equivalently,

(Id − ∂1K)(L〈∞〉 −L〈m〉) � A(z,u)B(z,u)
m

+ ∂2K · (L〈∞〉 −L〈m+1〉) (4.4.9)

where Id ∈ Cd×d is the d× d identity matrix.
Let us show that the inverse matrix (Id − ∂1K)−1 exists and has non-negative coefficients in the sense

of formal power series. As discussed in the proof of Lemma 4.3.1, the matrix ∂1K is nilpotent at z = 0.
Equivalently, there exists a non-negative integer K such that (∂1K)

K is divisible by z. It means that the
formal series

∑
j>0 (∂1K)

j is well-defined and hence so is the formal inverse (Id − ∂1K)−1. Moreover, since
∂1K has non-negative coefficients, the same holds for the investigated inverse matrix (Id − ∂1K)−1.

Now, let us focus on the behaviour of (Id − ∂1K)−1 as a function near z = ρ(u). As follows from Propo-
sition 4.1.2 applied to the system of equations L〈∞〉 = K〈∞〉(L〈∞〉,L〈∞〉, z,u), for each real 0 < z < ρ(u)
we have the following inequality:

r(∂1K + ∂2K) < 1. (4.4.10)

By Perron–Frobenius theorem (see e.g. [Drm09, section 2.2.5] and references therein) the spectral radius of
a matrix with positive entries is monotonic in its coefficients. Hence, for all real 0 < z < ρ(u)

r(∂1K) < 1 (4.4.11)

and so, in the same interval
(Id − ∂1K)−1 =

∑
j>0

(∂1K)j . (4.4.12)

Moreover, due to the continuity of the spectral radius, the same identity can be extended to some complex
neighbourhood of u = 1.

Consequently, we can multiply both sides of (4.4.9) by (Id − ∂1K)−1 and obtain

L〈∞〉 −L〈m〉 � (Id − ∂1K)−1A(z, u)B(z,u)
m

+ (Id − ∂1K)−1∂2K(L〈∞〉 −L〈m+1〉) (4.4.13)

Let us denote δm := (Id − ∂1K)−1A(z,u)B(z,u)m and R := (Id − ∂1K)−1∂2K. Note that the inequality
L〈∞〉 −L〈m〉 � δm + R(L〈∞〉 −L〈m+1〉) can be further iterated for increasing values of m. In doing so, we
find that

L〈∞〉 −L〈m〉 � δm + Rδm+1 + R2δm+2 + · · · (4.4.14)
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Hence, the difference L〈∞〉 − L〈m〉 can be bounded by the tail of a geometric progression which appears as
a summation of the formal Neumann series

L〈∞〉 −L〈m〉 � B(z, u)m
∑
k>0

(B(z,u)R)k(Id − ∂1K)−1A(z,u). (4.4.15)

Let us now focus on the above formal Neumann series. Note that applying Proposition 4.1.1 (Drmota–
Lalley–Woods theorem) to the limiting system (4.3.3), we obtain that the vector of functions L〈∞〉(z,u)
admits a coordinate-wise Puiseux expansion in form of

L〈∞〉(z,u) ∼ `0(u)− `1(u)

√
1− z

ρ(u)
(4.4.16)

where functions `0(u), `1(u), ρ(u) are analytic near u = 1. Likewise, both matrices ∂1K and ∂2K admit
Puiseux expansions of the same kind.

Let us prove that coordinate-wise Puiseux expansions of the matrix R near the singular point z = ρ(u)
have the form

R = (Id − ∂1K)−1∂2K ∼R0 −R1

√
1− z

ρ(u)
, z → ρ(u) (4.4.17)

where the spectral radius of R0 satisfies r(R0) = 1. According to Perron–Frobenius theorem, since the
coefficients of R are non-negative, the eigenvalue of the matrix R with the largest absolute value, i.e. the
eigenvalue corresponding to the spectral radius ofR, is the largest real positive solution λ of the characteristic
equation

det
(
(Id − ∂1K)−1∂2K− λId

)
= 0. (4.4.18)

Since the determinant of a matrix product is equal to the product of respective determinants and det (Id − ∂1K) 6=
0, as Id − ∂1K is invertible, the above condition is equivalent to

det (∂2K + λ∂1K− λId) = 0 and also det(∂1K + λ−1∂2K− Id) = 0. (4.4.19)

Let us show that the largest positive real solution (as a function of z < ρ(u)) of this equation, does not
exceed 1, with equality when z = ρ(u). Assume, by contrary, that λ > 1. The matrix (∂1K + λ−1∂2K)
is a matrix with non-negative coefficients, whose coefficients are strictly smaller than the coefficients of the
matrix (∂1K + ∂2K). By Perron–Frobenius theorem (see e.g. [Drm09, section 2.2.5] and references therein),
the spectral radius of a matrix with positive coefficients is monotonic in its coefficients, so for λ > 1

r(∂1K + λ−1∂2K) < r(∂1K + ∂2K) = 1. (4.4.20)

Therefore, the characteristic equation cannot have a solution λ > 1. Moreover, the spectral radius of R0 is
equal to the spectral radius of R when z = ρ(u) because in this case, the two matrices coincide. Therefore,
r(R0) = 1.

Moving back to the upper bound (4.4.15), according to the exponential convergence condition in Defini-
tion 4.3.1, in a complex vicinity of u = 1, the absolute value of the function B(z,u) is strictly smaller than
1, hence the inverse matrix (Id −B(z, u)R)−1 in (4.4.15) exists. Moreover, since

A−1 =
1

det (A)
· adj(A) (4.4.21)

where adj(A) is the adjugate matrix of A, each element of the inverse matrix (Id − B(z, u)R)−1 can be
represented as a ratio of a sum of products of functions admiting Puiseux series expansions in form of
a(u) − b(u)

√
1− z/ρ(u) + O(|1− z/ρ(u)|) and a non-zero determinant of Id −B(z, u)R. It means that

each coordinate in the inverse matrix (Id − B(z, u)R)−1 also admits a Puiseix series expansion of similar
form. Thus, the Neumann series in (4.4.15) converges and we obtain

L〈∞〉 −L〈m〉 � B(z,u)m × (Id −B(z,u)R)
−1

(Id − ∂1K)−1A(z,u). (4.4.22)
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From (4.4.22) we now note that the difference L〈∞〉 − L〈m〉 can be bounded by a vector of functions
having the same singularity ρ(u) as the components of the vector L〈∞〉. The Puiseux coefficients of this
upper bound decay exponentially fast as m → ∞. Moreover, these coefficients are analytic functions near
u = 1.

Second part. Assume that function L〈m〉(z,u) admits some upper and lower bounds and denote by
∆m(z,u) the difference between these bounds:

L〈m〉(z,u) � L〈m〉(z,u) � L〈m〉(z,u), ∆〈m〉(z,u) := L〈m〉(z,u)−L〈m〉(z,u). (4.4.23)

Then, another pair of upper and lower bound can be established for L〈m−1〉 from (4.3.2) (infinite system of
equations) with the difference ∆〈m−1〉 satisfying

∆〈m−1〉 = K〈m−1〉(L〈m−1〉,L〈m〉)−K〈m−1〉(L〈m−1〉,L〈m〉) � ∂1K ·∆〈m−1〉 + ∂2K ·∆〈m〉. (4.4.24)

That is, repeating the argument that allows to multiply both sides of the inequality by the inverse matrix,
we obtain

∆〈m−1〉 � (Id − ∂1K)−1∂2K ·∆〈m〉. (4.4.25)
As we discovered in the first part, the matrix R := (Id − ∂1K)−1∂2K has spectral radius 1 at the singular
point z = ρ(u).

Third part. As a result of the first part, we know that L〈∞〉(z,u) − L〈m〉(z,u) can be bounded in the
following manner:

0 � L〈∞〉(z,u)−L〈m〉(z,u) � B(z,u)m(Id −B(z, u)R)−1A(z,u). (4.4.26)

Let us assign
∆
〈m〉
0 := B(z,u)m(Id −B(z, u)R)−1A(z,u) (4.4.27)

for the difference between upper and lower bounds for the vector of functions L〈m〉(z,u). Next, using the
result of the second part, we construct a family of differences ∆

〈m〉
k between upper and lower bounds for

L〈m〉(z,u), so that for every k,m > 0 it holds

L
〈m〉
k (z,u) � L〈m〉(z,u) � L〈m〉k (z,u) and ∆

〈m〉
k := L

〈m〉
k (z,u)−L〈m〉k (z,u). (4.4.28)

The family of upper and lower bounds is defined using the procedure described in the second part. More
specifically, for every m > 1 and k > 0 these bounds satisfy the equations

L
〈m−1〉
k+1 (z,u) := K〈m−1〉(L

〈m−1〉
k+1 (z,u),L

〈m〉
k (z,u), z,u);

L
〈m−1〉
k+1 (z,u) := K〈m−1〉(L

〈m−1〉
k+1 (z,u),L

〈m〉
k (z,u), z,u).

(4.4.29)

According to the second part, the differences ∆
〈m〉
k satisfy formal power series inequalities ∆

〈m−1〉
k+1 �

R∆
〈m〉
k . By iteration, we thus obtain

∆〈0〉m �Rm∆
〈m〉
0 . (4.4.30)

Since the spectral radius of R is bounded by 1, and ∆
〈m〉
0 is exponentially small in m, the values of Puiseux

coefficients of L〈0〉(z,u) can be approximated within an exponentially small in m gap, for arbitrarily large
value of m.

Finally, we note that the functions L〈0〉m (z,u) and L〈0〉m (z,u) have Puiseux expansions of type

fm(z,u) ∼ cm(u)− am(u)

√
1− z

ρ(u)
(4.4.31)

in a certain delta-domain. According to Proposition 3.1.1 (transfer theorem), their coefficients admit the
following asymptotic estimate:

fm(z,u) ∼ CnAm(u)B(u)n. (4.4.32)
A final application of Lemma 4.2.1 (squeeze lemma for formal power series) combined with Remark 4.2.1
finishes the proof.
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Remark 4.4.2. In Theorem 4.4.1 we prove a so-called weak transfer theorem, i.e. prove that the asymptotics
of the coefficients of each L〈m〉 can be obtained by taking the asymptotic expansion of the correseponding
Puiseux expansion. A stronger version would suggest that the generating functions L〈m〉(z,u) can be ana-
lytically continued beyond the circle of convergence of corresponding formal power series, in a certain delta-
domain. However, for our analysis, the presented weak variant is enough. The techniques presented above,
can be further extended to obtain a stronger transfer theorem, by computing the Taylor series expansions
at points z0 inside the circle of convergence.
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Chapter 5

Multiparametric Boltzmann samplers
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The materials of this chapter follow [BBD18a]. Uniform random generation of combinatorial structures
forms a prominent research area of computer science with multiple important applications ranging from
automated software testing techniques, see [CH00], to complex simulations of large physical statistical models,
see [Bha+17]. Given a formal specification defining a set of combinatorial structures (for instance graphs,
proteins or tree-like data structures) we are interested in their efficient random sampling ensuring the uniform
distribution among all structures sharing the same size.

One of the earliest examples of a generic sampling template is Nijenhuis andWilf’s recursive method [NW78]
later systematised by Flajolet, Zimmermann and Van Cutsem [FZC94]. In this approach, the generation
scheme is split into two stages – an initial preprocessing phase where recursive branching probabilities dic-
tating subsequent sampler decisions are computed, and the proper sampling phase itself. Alas, in both
phases the algorithm manipulates integers of size exponential in the target size n, turning its effective bit
complexity to O(n3+ε), compared to Θ(n2) arithmetic operations required. Denise and Zimmermann re-
duced later the average-case bit complexity of the recursive method to O(n log n) in time and O(n) in space
using a certified floating-point arithmetic optimisation [DZ99]. Regardless, worst-case space bit complexity
remained O(n2) as well as bit complexity for non-algebraic languages. Remarkably, for rational languages
Bernardi and Giménez [BG12] recently linked the floating-point optimisation of Denise and Zimmermann
with a specialised divide-and-conquer scheme reducing further the worst-case space bit complexity and the
average-case time bit complexity to O(n).

A somewhat relaxed, approximate-size setting of the initial generation problem was investigated by
Duchon, Flajolet, Louchard and Schaeffer who proposed a universal sampler construction framework of so-
called Boltzmann samplers [Duc+04]. The key idea in their approach is to embed the generation scheme
into the symbolic method of analytic combinatorics [FS09] and, in consequence, obtain an effective recursive
sampling template for a wide range of existing combinatorial classes. In recent years, a series of important
improvements was proposed for both unlabelled and Pólya structures. Let us mention for instance linear
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approximate-size (and quadratic exact-size) Boltzmann samplers for planar graphs [Fus05], general-purpose
samplers for unlabelled structures [FFP07], efficient samplers for plane partitions [BFP10] or the cycle
pointing operator for Pólya structures [Bod+11]. Moreover, the framework was generalised onto differential
specifications [BRS12; Bod+16]; linear exact-size samplers for Catalan and Motzkin trees were obtained,
exploiting the shape of their holonomic specifications [BBJ13].

What was left open since the initial work of Duchon et al., was the development of (i) efficient Boltzmann
oracles providing effective means of evaluating combinatorial systems within their disks of convergence and
(ii) an automated tuning procedure controlling the expected sizes of parameter values of generated structures.
The former problem was finally addressed by Pivoteau, Salvy and Soria [PSS12] who defined a rapidly
converging combinatorial variant of the Newton oracle by lifting the combinatorial version of Newton’s
iteration of Bergeron, Labelle and Leroux [BLL98] to a new numerical level. In principle, using their Newton
iteration and an appropriate use of binary search, it became possible to approximate the singularity of a given
algebraic combinatorial system with arbitrarily high precision. However, even if the singularity ρ is estimated
with precision 10−10 its approximation quality does not correspond to an equally accurate approximation of
the generating function values at ρ, often not better than 10−2. Precise evaluation at z close to ρ requires
an extremely accurate precision of z. Fortunately, it is possible to trade-off the evaluation precision for an
additional rejection phase using the idea of analytic samplers [BLR15] retaining the uniformity even with
rough evaluation estimates.

Nonetheless, frequently in practical applications including for instance semi-automated software test-
ing techniques, additional control over the internal structure of generated objects is required, see [Pa l12].
In [BP10] Bodini and Ponty proposed a multidimensional Boltzmann sampler model, developing a tuning
algorithm meant for the random generation of words from context-free languages with a given target letter
frequency vector. However, their algorithm converges only in an a priori unknown vicinity of the target
tuning variable vector. In practice, it is therefore possible to control no more than a few tuning parameters
at the same time.

5.1 Preliminaries

Consider an unambiguous context-free grammar

Si →
∑
j

Tij(S1, . . . , Sn, •), i = 1, . . . , N, (5.1.1)

where

(i) • is the terminal symbol

(ii) Tij are possible transitions.

Example 5.1.1. The context-free grammar for well-formed parentheses has one non-terminal S, two termi-
nals ( and ), and three transitions from S:

S → SS | (S) | ().

It is well-known that the number an,i of words of length n produced by Si has a generating function

Si(z) =
∑
n>0

an,iz
n

which satisfies a system of algebraic equations

Si(z) =
∑
j

Tij(S1(z), . . . , Sn(z), z), (5.1.2)
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where the functions Tij(s1, . . . , sn, z) (despite possible abuse of notation) are monomials, where the power
of each sj and z equals to the number of occurences of the corresponding nonterminal or terminal symbol
in the transition Tij .

In the case when a context-free grammar has several terminals •1, •2, . . . , •d, the context-free grammar
can be schematically represented by a system of equations

Si →
∑
j

Tij(S1, . . . , Sn, •1, •2, . . . , •d). (5.1.3)

The number an1,n2,...,nd,i of words containing nk terminals of the color k produced by Si has a generating
function

Si(z1, z2, . . . , zd) =
∑
n>0

an1,n2,...,nd,iz
n1
1 zn2

2 · · · z
nd
4

which satisfies a system of polynomial equations

Si(z) =
∑
j

Tij(S1(z), . . . , Sn(z), z1, z2, . . . , zd), (5.1.4)

where z := (z1, z2, . . . , zd).
Corresponding to the presented definitions, two problems can be formulated.

Problem 5.1.1. Given a positive integer n, sample a word w of length n from a context-free grammar
uniformly at random;

Problem 5.1.2. Given positive integers (n1, n2, . . . , nd), sample a word w with nk literals of color k from
a context-free grammar uniformly at random;

It turns out that in its full generality, the second problem is known to be #P -complete, i.e. higher in the
complexity hierarchy than NP-complete. The author was not able to point the exact reference concerning
the context-free grammars and the statement appears to be folklore, so we present a proof for completeness.

Theorem 5.1.1. Exact sampling from context free grammars is #P-complete.

Proof by example. In the paper of Jerrum, Valiant, Vazirani [JVV86] it is proven that uniform random
sampling of all cycles in a directed graph is #P-complete. This is the celebrated link between enumeration
complexity and generation complexity (and it seems that we can also hope that fast generation algorithms
can also give us fast enumeration algorithms). And perhaps encoding directed cycles in oriented graphs is
not so easy in the language of algebraic specifications. So I decided to take another route.

Note that, however, not every hard enumeration problem is hard to sample. For example the number of
satisfying assignments of a DNF (disjunctive normal form, as opposed to conjunctive normal form) is easy
to sample uniformly at random, but the problem is #P-complete. In fact, it is also known [JVV86] that
uniform fast sampling is possible iff an fully-polynomial randomized approximation scheme (FPRAS) exists.

Theorem ([WG01]). There is no fully polynomial randomized approximation scheme for #2SAT unless
NP = RP (the latter denoting randomized polynomial time).

Theorem ([JVV86]). Almost uniform sampling (with exponentially small error) is possible iff a problem
admits fully polynomial randomized approximation scheme.

Corollary. Uniform sampling of satisfying assignments of 2-SAT is #P-complete.
Consider then for example the following 2-CNF formula

F = (x1 ∨ x2)

c1

(x1 ∨ x4)

c2

(x2 ∨ x3)

c3

(x2 ∨ x4)

c4

(x3 ∨ x4)

c5
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Construct a system of algebraic equations, where c1, . . . , c5 correspond to clauses, and x1, x1, . . . , x4, x4

correspond to the literals:

x1 = c1c2,

x1 = 1,

x2 = c1c3c4,

x3 = c3c5,

· · · ,

where each literal x is equal to the product of ci corresponding to clauses where x enters. Then, we define
a multivariate function A in the following way:

A(c1, . . . , c5) = (x1 + x1) . . . (x4 + x4)(1 + c1) . . . (1 + c5).

Using the notation [zn]F (z) = n-th coefficient of F (z), we can express the number of satisfying assignments:

#2SAT (F ) = [c21c
2
2 . . . c

2
5]A(c1, . . . , c5).

Since the computation of satisfying assignments of the 2-SAT is #P-complete, the problem of exact sampling
from multiparametric context-free grammars is #P-complete as well.

This high complexity of multiparametric sampling is one of the reasons to introduce a relaxation of the
exact formulation, and to impose Boltzmann distribution instead of uniform distribution. Let S(z) be the
generating function of the language S:

S(z) =
∑
n>0

anz
n

Consider a distribution Pz on words from S:
• conditioned on word length n, the distribution is uniform;

• the distribution of the length follows

Pz(|w| = n) =
anz

n

S(z)
;

Problem 5.1.3. Given an unambiguous context-free grammar S

Si →
∑
j

Tij(S1, . . . , Sn, •)

and a real value z > 0, sample a random word from the Boltzmann distribution.

In [Duc+04], the term Boltzmann sampler was invented and they presented a very elegant and efficient
algorithm solving this problem.
Algorithm 1: Boltzmann sampler for context-free grammars
Data: real value z > 0
Result: Random word from Boltzmann distribution
Function ΓSi(z):

if Si is terminal then
return • ;

for all j do

pj :=
Tij(S1(z), . . . , Sn(z), z)

Si(z)
;

Choose the transition Tij with probability pj ;
A1A2 . . . Ak := Tij ;
return ΓA1(z)ΓA2(z) · · ·ΓAk(z) ;
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In this context, one of the key advantages of Boltzmann sampling is its ability to sample from multipara-
metric Boltzmann distribution assuming that the values z1, . . . , zd are chosen.
Algorithm 2: Multiparametric Boltzmann sampler for context-free grammars
Data: real values z1, z2, · · · , z` > 0
Unambiguous multiparametric context free grammar

Si →
∑
j

Tij(S1, . . . , Sn, •1, •2, · · · , •`)

Result: Random word from Boltzmann distribution
Function ΓSi(z):

if Si is terminal •k then
return •k ;

for all j do

pj :=
Tij(S1(z), . . . , Sn(z), z1, z2, · · · , z`)

Si(z)
;

Choose the transition Tij with probability pj ;
A1A2 . . . Ak := Tij ;
return ΓA1(z)ΓA2(z) · · ·ΓAk(z) ;

Theorem 5.1.2 (Properties of Boltzmann sampler, [Duc+04]).

(i) Boltzmann sampler returns a word from the Boltzmann distribution

(ii) The expected number of terminals •k is given by

Ez[#of •k in a random word w] = zk

∂
∂zk

S(z)

S(z)

(iii) In strongly connected grammars, if

Ez[#of •k] = nk = αkn, n→∞,

then, under Boltzmann distribution with parameter z,[
#of •k in w

∣∣∣ |w| = n
]

d−→
n→∞

N (αkn,Ckn)

One of the challenges of multiparametric Boltzmann sampling is to design a dedicated tuning procedure
which, given the expectation vector (End)`d=1, would return a vector of arguments of the generating functions
z = (z1, . . . , z`). The main challenge of multiparametric tuning is that every argument depends on every
expectation vector, and for this reason, it is not possible to tune the arguments independently, see Figure 5.1.

Previously, several results on multiparametric tuning were obtained, most notably, Newton iteration
locally convergent procedure [BP10], an automated heuristic approach [DPT10] implemented in practice,
and an automatic self-correction procedure with a name analytic sampler [BLR15] which is a variation of
the Boltzmann sampler. We show how to design an efficient and provable polynomial tuning algorithm.

5.2 Samplers for regular grammars
Recall that a strongly connected regular grammar

F = Φ(F , z) (5.2.1)
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Figure 5.1: Concept of handles and expectations for multiparametric tuning

is a specification corresponding to a regular language whose dependency graph is strongly connected. State
and transitions of the associated automaton correspond to classes F = (F1, . . . , Fm) and to appropriate
monomials in the system (5.2.1), respectively. We assume that a grammar is unambiguous.

For rational samplers, we decide to implement the strategy of interruptible sampling, introduced in [BBJ13]
as the so-called Hand of God principle. The idea of anticipated rejection is also discussed in [BGR15]. We
start with fixing two distinguished states of the automaton, a starting one and a final (terminal) one. The
starting and the terminal states may coincide. Next, we construct a tuned variant of the corresponding sin-
gular sampler. Specifically, tune it with arbitrarily high, yet still feasible precision. In essence, it is enough
to tune to expected quantities exceeding the target ones. While tuning, we add a constraint ‖v‖ 6M where
v contains all the variables F and z, and M is a logarithm of a large number, say M = 40. This constraint
is required because otherwise the value of associated generating functions tends to infinity as z approaches
the singular point. Moreover, by doing so we will compute branching probabilities with an error no more
than O(e−M ). Under these conditions, the resulting sampler is unlikely to stop with output size less than
the target one. Finally, we run the sampler from its initial state and continue sampling until the target
structure size n0 is attained. We pick the maximal value n such that the object of size n visited the final
state, and return this object. In the following proposition we show that such a sampling procedure is actually
an efficient generation scheme. (As noted by Éric Fusy, the option to choose the “ceiling” value of n, instead
of choosing the “floor” value, i.e. minimal n > n0 visiting the final state, is guaranteed to be uniform, while
the latter can cause unexpected side effects because of conditioning).

Proposition 5.2.1. Let n be the target size of an interruptible sampler ΓS associated with a strongly
connected rational system S. Then, the following assertions hold:

1. structures are sampled from a uniform, conditioned on the (composition) size, distribution;

2. the size of the generated structures is n− O(1) in probability where the constant error term depends
solely on S.

Proof. Let ω be a structure generated by the interruptible sampler ΓS. Assume w.l.o.g. that S = (S1, . . . , Sm)
and moreover S1 and Sm correspond to the associated automaton’s starting and final state, respectively. We
split the proof into two parts.

Firstly, let us focus on the uniformity (1). We show that conditioned on the vector of quantities n, the
probability of a structure ω with given number of atomic classes is proportional to zn. According to the
underlying Boltzmann model, each transition Si → Sj taken by ΓS happens with probability

PSi→Sj = z∆nSj(z)

Si(z)
(5.2.2)
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where ∆n denotes the change in the size of ω following transition Si → Sj .
Note however that while we trace the interruptible sampler generating ω, the ratios of generating functions

in (5.2.2) cancel out (with the exception of the final Sm(z)). In consequence, the probability Pω that ΓS
generated the structure ω becomes

Pω = z
∑

∆nSm(z) = znSm(z) (5.2.3)

where the latter equality follows from the fact that the sum
∑

∆n of the increments in size is equal to
the final size n. And so, if we condition on the composite size, i.e. the vector of numbers of atoms, the
distribution is indeed uniform.

Let us turn to assertion (2). Once the sampler passes the target size, it becomes a Markov chain with a
single absorbing state Sm. The chain is irreducible, as the associated system is strongly connected, whereas
all of the states S1, . . . , Sm−1 are not absorbing. Moreover, we can assume that once the target size is
reached, the sampler starts a random walk in state Si where i 6= m as otherwise our claim holds trivially.

In consequence, the expected excess outcome size is proportional to the expected absorption time starting
in the transient state Si. This time, however, is known to be finite, see [KS60, Chapter III]. In conclusion,
the expected outcome excess size is necessarily finite. An application of Markov’s inequality finishes the
proof.

5.3 Multiparametric sampling
In the present paper we propose a novel polynomial-time tuning algorithm based on convex optimisation
techniques, overcoming the previous convergence difficulties. We demonstrate the effectiveness of our ap-
proach with several examples of rational, algebraic and Pólya structures. Remarkably, with our new method,
we are easily able to handle large combinatorial systems with thousands of combinatorial classes and tuning
parameters.

In order to illustrate the effectiveness of our approach, we have implemented a prototype sampler gener-
ator Boltzmann Brain (bb in short). The source code is available at Github1. Supplementary scripts used to
generate and visualise the presented applications of this paper are available as a separate repository2.

In § 5.3 we briefly recall the principles of Boltzmann sampling. Next, in § 5.4 we describe the tuning
procedure. In § 10.6 we propose four exemplary applications and explain the interface of bb. Finally,
in Section 5.5 we give the proofs of the theorems, discuss implementation details and describe a novel
exact-size sampling algorithm for strongly connected rational grammars.

5.3.1 Specifiable k-parametric combinatorial classes.
Let us consider the neutral class E and its atomic counterpart Z, both equipped with a finite set of admissible
operators (i.e. disjoint union +, Cartesian product ×, sequence Seq, multiset MSet and cycle Cyc), see [FS09,
pp. 24–30]. Combinatorial specifications are finite systems of equations (possibly recursive) built from
elementary classes E , Z and the admissible operators.

Example 5.3.1. Consider the following joint specification for T and Q. In the combinatorial class T of
trees, nodes of even level (the root starts at level one) have either no or two children and each node at odd
level has an arbitrary number of non-planarily ordered children:{

T = ZMSet(Q) ,

Q = Z + ZT 2 .
(5.3.1)

In order to distinguish (in other words mark) some additional combinatorial parameters we consider the
following natural multivariate extension of specifiable classes.

1https://github.com/maciej-bendkowski/boltzmann-brain
2https://github.com/maciej-bendkowski/multiparametric-combinatorial-samplers

69

https://github.com/maciej-bendkowski/boltzmann-brain
https://github.com/maciej-bendkowski/multiparametric-combinatorial-samplers


Class Description C(z) ΓC(z)

Neutral C = {ε} C(z) = 1 ε

Atom C = {ti} C(z) = zi �i

Union C = A+ B A(z) +B(z) Bern
(A(z)
C(z) ,

B(z)
C(z)

)
−→ ΓA(z) | ΓB(z)

Product C = A× B A(z)×B(z) (ΓA(z),ΓB(z))

Sequence C = Seq(A) (1−A(z))−1 ` := Geom(1−A(z)) −→ (ΓA(z))×` times

MultiSet MSet(A) exp
(∑∞

m=1
1
mA(zm)

)
see [FFP07]

Cycle Cyc(A)
∑∞
m=1

ϕ(m)
m ln 1

1−A(zm) see [FFP07]

Table 5.1: Multivariate generating functions and their Boltzmann samplers ΓC(z).

Definition 5.3.1. (Specifiable k-parametric combinatorial classes) A specifiable k-parametric combinatorial
class is a combinatorial specification built, in a possibly recursive manner, from k distinct atomic classes Zi
(i ∈ {1, . . . , k}), the neutral class E and admissible operators +,×,Seq,MSet and Cyc. In particular, a vector
C = (C1, . . . , Cm) forms a specifiable k-parametric combinatorial class if its specification can be written down
as 

C1 = Φ1(C,Z1, . . . ,Zk) ,
...
Cm = Φm(C,Z1, . . . ,Zk)

(5.3.2)

where the right-hand side expressions are composed from C,Z1, . . . ,Zk, admissible operators and the neutral
class E . Moreover, we assume that specifiable k-parametric combinatorial specifications form well-founded
aperiodic systems, see [BLL98; PSS12; Drm97].

Example 5.3.2. Let us continue our running example, see (5.3.1). Note that we can introduce two addi-
tional marking classes U and V into the system, of weight zero each, turning it in effect to a k-specifiable
combinatorial class as follows: {

T = UZMSet(Q),

Q = VZ + ZT 2 .
(5.3.3)

In this example, U is meant to mark the occurrences of nodes at odd levels, whereas V is meant to mark
leaves at even levels. In effect, we decorate the univariate specification with explicit information regarding
the internal structural patterns of our interest.

Much like in their univariate variants, k-parametric combinatorial specifications are naturally linked to
ordinary multivariate generating functions, see e.g [FS09].

Definition 5.3.2. (Multivariate generating functions) The multivariate ordinary generating function in
variables z1, . . . , zk associated to a specifiable k-parametric combinatorial class C is defined as

C(z1, . . . , zk) =
∑

p1>0,...,pk>0

cpz
p (5.3.4)

where cp = cp1,...,pk denotes the number of structures with pi atoms of type Zi and zp denotes the product
zp11 · · · z

pk
k . In the sequel, we call p the (composition) size of the structure.

In this setting, we can easily lift the usual univariate generating function building rules to the realm
of multivariate generating functions associated to specifiable k-parametric combinatorial classes. Table 5.1
summarises these rules.
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5.3.2 Multiparametric Boltzmann samplers.
Consider a typical multiparametric Boltzmann sampler workflow [BP10] on our running example, see (5.3.3).
We start with choosing target expectation quantities (n, k,m) of nodes from atomic classes (Z,U ,V). Next,
using a dedicated tuning procedure we obtain a vector of three real positive numbers z = (z, u, v) depending
on (n, k,m). Then, we construct a set of recursive Boltzmann samplers ΓU(z),ΓMSet(Q(z)), etc. according
to the building rules in Table 5.1. Finally, we use the so constructed samplers to generate structures with
tuned parameters.

In order to sample from either E or atomic classes, we simply construct the neutral element ε or an
appropriate atomic structure �i, respectively. For union classes we make a Bernoulli choice depending
on the quotients of respective generating functions values and continue with sampling from the resulting
class. In the case of product classes, we spawn two independent samplers, one for each class, and return
a pair of built structures. Finally, for Seq(A) we draw a random value from a geometric distribution
with parameter 1 − A(z) and spawn that many samplers corresponding to the class A. In other words,
P(` instances) = A(z)`(1 − A(z)). In the end, we collect the sampler outcomes and return their list. The
more involved MSet and Cyc constructions are detailed in [FFP07].

The probability space associated to so constructed Boltzmann samplers takes then the following form.
Let z ∈ (R+)k be a vector inside the ball of convergence of C(z) and ω be a structure of composition size p
in a k-parametric class C. Then, the probability that ω becomes the output of a multiparametric Boltzmann
sampler ΓC(z) is given as

Pz(ω) =
zp

C(z)
(5.3.5)

Proposition 5.3.1. Let N = (N1, . . . , Nk) be the random vector where Ni equals the number of atoms of
type Zi in a random combinatorial structure returned by the k-parametric Boltzmann sampler ΓC(z). Then,
the expectation vector Ez(N) and the covariance matrix Covz(N) are given by

Ez(Ni) =
∂

∂ξi
logC(eξ)

∣∣∣∣
ξ=log z

and Covz(N) =

[
∂2

∂ξi∂ξj
logC(eξ)

]k
i,j=1

∣∣∣∣∣
ξ=log z

(5.3.6)

Hereafter, we use ez to denote coordinatewise exponentiation.

Corollary 5.3.1. The function γ(z) := logC(ez) is convex because its matrix of second derivatives, as a
covariance matrix, is positive semi-definite inside the set of convergence. This crucial assertion will later
prove central to the design of our tuning algorithm.

Remark 5.3.1. Uniparametric recursive samplers of Nijenhuis and Wilf take, as well as Boltzmann samplers,
a system of generating functions as their input. This system can be modified by putting fixed values of
tuning variables, in effect altering the corresponding branching probabilities. The resulting distribution of
the random variable corresponding to a weighted recursive sampler coincides with the distribution of the
Boltzmann-generated variable conditioned on the structure size. As a corollary, the tuning procedure that
we discuss in the following section is also valid for the exact-size approximate-frequency recursive sampling.
In Section 5.2 we describe an algorithm for rational specifications which samples objects of size n + O(1).
As a by-product, we show how to convert approximate-size samplers corresponding to rational systems into
exact-size samplers.

5.4 Tuning as a convex optimisation problem
We start with a general result about converting the problem of tuning arbitrary specifiable k-parametric
combinatorial specifications into a convex optimisation problem, provided that one has access to an oracle
yielding values and derivatives of corresponding generating functions. We note that this general technique
can be applied to differential specifications as well. We write f(·) → minz, f(·) → maxz to denote the
minimisation (maximisation, respectively) problem of the target function f(·) with respect to the vector
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variable z. All proofs are postponed until Section 5.5. Throughout this section, we assume that given
tuning expectations are admissible in the sense that there always exists a target vector z∗ corresponding
to (5.3.6). Furthermore, we assume that the combinatorial system is well-founded and strongly connected.
Some non-strongly connected cases fall into the scope of our framework as well, but for the core proof ideas
we concentrate only on strongly connected systems.

Theorem 5.4.1. Consider a multiparametric combinatorial class C. Fix the expectations EzN = ν,
see Proposition 5.3.1. Let C(z) be the generating function corresponding to C. Then, the tuning vector
z, see (5.3.6), is equal to eξ where ξ comes from the following minimisation problem:

logC(eξ)− ν>ξ → min
ξ

. (5.4.1)

Let us turn to the specific classes of algebraic and rational specification. In those cases, no differential-
equation type systems are allowed; however, it is possible to reformulate the problem so that no extra oracles
are required.

Theorem 5.4.2. Let C = Φ(C,Z) be a multiparametric algebraic system with C = (C1, . . . , Cm). Fix the
expectations Ni of the parameters of objects sampled from C1 to EzN = ν. Then, the tuning vector z is
equal to eξ where ξ comes from the convex problem:{

c1 − ν>ξ → minξ,c ,

log Φ(ec, eξ)− c 6 0.
(5.4.2)

Hereafter, “6” and log Φ denote a set of inequalities and the coordinatewise logarithm, respectively.

Let us note that the above theorem naturally extends to the case of labelled structures with Set and
Cyc operators. For unlabelled Pólya operators like MSet or Cyc, we have to truncate the specification to
bound the number of substitutions. In consequence, it becomes possible to sample corresponding unlabelled
structures, including partitions, functional graphs, series-parallel circuits, etc.

Singular Boltzmann samplers (also defined in [Duc+04]) are the limiting variant of ordinary Boltzmann
samplers with an infinite expected size of generated structures. In their multivariate version, samplers
are considered singular if their corresponding variable vectors belong to the boundary of the respective
convergence sets.

Theorem 5.4.3. Let C = Φ(C,Z,U) be a multiparametric algebraic system with C = (C1, . . . , Cm), the
atomic class Z marking the corresponding structure size and U = (U1, . . . ,Uk) being a vector (possibly
empty) of distinguished atoms. Assume that the target expected frequencies of the atoms Ui are given by
the vector α. Then, the variables (z,u) that deliver the tuning of the corresponding singular Boltzmann
sampler are the result of the following convex optimisation problem, where z = eξ, u = eη:{

ξ +α>η → maxξ,η,c ,

log Φ(ec, eξ, eη)− c 6 0 .
(5.4.3)

Finally, let us note that all of the above outlined convex programs can be effectively optimised using the
polynomial-time interior-point method optimisation procedure of Nesterov and Nemirovskii [NN94]. The
required precision ε is typically Poly(n), see Section 5.5.

Theorem 5.4.4. For multiparametric combinatorial systems with description length L, the tuning problem
can be solved with precision ε in time O

(
L3.5 log 1

ε

)
.

Let us complete this section by constructing an optimisation system for (5.3.2). Let (n, k,m) be the
target expectation quantities of (Z,U ,V). By the rules in Table 5.1, the system of functional equations and
its log-exp transformed optimisation counterpart take the formT (z, u, v) = uz exp

( ∞∑
i=1

Q(zi, ui, vi)

i

)
,

Q(z, u, v) = vz + zT (z, u, v)2 .

(5.4.4)
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Setting T (zi, ui, vi) = eτi , Q(zi, ui, vi) = eκi , z = eζ , u = eη, v = eφ, we obtain
τ1 − nζ − kη −mφ→ min,

τj > ηj + ζj +

∞∑
i=1

eκij

i
, j ∈ {1, 2, . . .}

κj > log(eφj+ζj + eζj+2τj ), j ∈ {1, 2, . . .} .

(5.4.5)

For practical purposes, the sum can be truncated with little effect on distribution.

5.5 Convex optimisation: proofs and algorithms
Until now, we have left several important questions unanswered. Firstly, what is the required precision ε for
multiparametric tuning? Secondly, what is its precise computational complexity? In order to determine the
time and space complexity of our tuning procedure we need to explain some technical decisions regarding
the choice of particular optimisation methods. In this section we prove that the optimisation procedures
described in § 5.4 give the correct solution to the tuning problem.

5.5.1 Proofs of the theorems.

Proof of Theorem 5.4.1. Let the following nabla-notation denote the vector of derivatives (so-called gradient
vector) with respect to the variable vector z = (z1, . . . , zk):

∇zf(z) =

(
∂

∂z1
f(z), . . . ,

∂

∂zk
f(z)

)>
. (5.5.1)

We start with noticing that tuning the expected number of atom occurrences is equivalent to solving the
equation ∇ξ logC(eξ) = ν, see Proposition 5.3.1. Here, the right-hand side is equal to ∇ξ(ν>ξ) so tuning
is further equivalent to ∇ξ

(
logC(eξ)− ν>ξ

)
= 0. The function under the gradient is convex as it is a sum

of a convex and linear function. In consequence, the problem of minimising the function is equivalent to
finding the root of the derivative

logC(eξ)− ν>ξ → min
ξ

. (5.5.2)

Definition 5.5.1. (Feasible points) In the optimisation problem{
f(z)→ min,

z ∈ Ω
(5.5.3)

a point z is called feasible if it belongs to the set Ω.

Proof of Theorem 5.4.2. Let N = (N1, . . . , Nk) be the vector of atom occurrences of each type. Consider
the vector z∗ such that Ez∗(N) = ν. Let c denote the logarithms of the values of generating functions at
point z∗ = eξ

∗
. Clearly, in such a case all inequalities in (5.4.2) become equalities and the point (c, ξ∗) is

feasible.
Let us show that if the point (c, ξ) is optimal, then all the inequalities in (5.4.2) become equalities.

Firstly, suppose that the inequality
c1 > log Φ1(ec, eξ) (5.5.4)

does not turn to an equality. Certainly, there is a gap and the value c1 can be decreased. In doing so, the
target function value is decreased as well. Hence, the point (c, ξ) cannot be optimal.

Now, suppose that the initial inequality does turn to equality, however ck > log Φk(ec, eξ) for some k 6= 1.
Since the system is strongly connected, there exists a path P = c1 → c2 → · · · → ck (indices are chosen
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without loss of generality) in the corresponding dependency graph. Note that for pairs of consecutive variables
(ci, ci+1) in P , the function log Φi(e

c, eξ) is strictly monotonic in ci+1 (as its monotonic and references ci+1).
In such a case we can decrease ci+1 so to assure that ci > log Φi(e

c, eξ) while the point (c, ξ) remains feasible.
Decreasing ci+1, ci, . . . , c1 in order, we finally arrive at a feasible point with a decreased target function value.
In consequence, (c, ξ) could not have been optimal to begin with.

So, eventually, the optimisation problem reduces to minimising the expression subject to the system
of equations c = log Φ(ec, eξ) or, equivalently, C(z) = Φ(C(z), z) and can be therefore further reduced
to Theorem 5.4.1.

Proof of Theorem 5.4.3. By similar reasoning as in the previous proof, we can show that the maximum is
attained when all the inequalities turn to equalities. Indeed, suppose that at least one inequality is strict, say
cj > log Φj(e

c, eξ, eη). The value cj can be slightly decreased by ε by choosing a sufficiently small distortion
ε to turn all the equalities containing cj in the right-hand side log Φi(e

c, eξ, eη) to strict inequalities, because
the right-hand sides of each of the inequalities are monotonic functions with respect to cj . This procedure
can be repeated until all the equalities turn into inequalities. Finally, we slightly decrease the value ξ to
increase the target function while still staying inside the feasible set, because of the monotonicity of the
right-hand side with respect to ξ.

Let us fix u = eη. For rational and algebraic grammars, within the Drmota–Lalley–Woods framework,
see for instance [Drm97], the corresponding generating function singular approximation takes the form

C(z,u) ∼ a0(u)− b0(u)

(
1− z

ρ(u)

)t
. (5.5.5)

If t < 0, then the asymptotically dominant term becomes −b0
(

1− z
ρ(u)

)t
. In this case, tuning the target

expected frequencies corresponds to solving the following equation as z → ρ(u):

diag(u)
[zn]∇uC(z,u)

[zn]C(z,u)
= nα . (5.5.6)

Let us substitute the asymptotic expansion (5.5.5) into (5.5.6) to track how u depends on α:

diag(u)

[zn]tb0(u)

(
1− z

ρ(u)

)t−1

z
∇uρ(u)

ρ2(u)

[zn]b0(u)

(
1− z

ρ(u)

)t = −nα . (5.5.7)

Only dominant terms are accounted for. Then, by the binomial theorem

diag(u)b0(u)
t

n

(
t− 1

n

)
z∇uρ(u)

ρ2(u)
b0(u)−1

(
t

n

)−1

= −α , (5.5.8)

With z = ρ(u), as n→∞, we obtain after cancellations

diag(u)
∇uρ(u)

ρ(u)
= −α (5.5.9)

which can be rewritten as
∇η log ρ(eη) = −α . (5.5.10)

Passing to exponential variables (5.5.10) becomes

∇η(ξ(η) +α>η) = 0 . (5.5.11)

As we already discovered, the dependence ξ(η) is given by the system of equations because the maximum is
achieved only when all inequalities turn to equations. That is, tuning the singular sampler is equivalent to
maximising ξ +α>η over the set of feasible points.
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Remark 5.5.1. For ordinary and singular samplers, the corresponding feasible set remains the same; what
differs is the optimised target function. Singular samplers correspond to imposing an infinite target size. In
practice, however, the required singularity is almost never known exactly but rather calculated up to some
feasible finite precision. The tuned structure size is therefore enormously large, but still, nevertheless, finite.
In this context, singular samplers provide a natural limiting understanding of the tuning phenomenon and
as such, there are several possible ways of proving Theorem 5.4.3.

Figure 5.2 illustrates the feasible set for the class of binary trees and its transition after applying the
log-exp transform, turning the set into a convex collection of feasible points. In both figures, the singular
point is the rightmost point on the plot. Ordinary sampler tuning corresponds to finding the tangent line
which touches the set, given the angle between the line and the abscissa axis.
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Figure 5.2: Binary trees B > z+ zB2 and log-exp transform of the feasible set. The black curve denotes the
principal branch of the generating function B(z) corresponding to the class of binary trees.

5.5.2 Disciplined convex programming and optimisation algorithms.
In the subsequent proofs, we present the framework of Disciplined Convex Programming (DCP in short)
and show how to incorporate elementary combinatorial constructions into this framework. Nesterov and
Nemirovskii [NN94] developed a seminal polynomial-time optimisation algorithm for convex programming
which involves the construction of certain self-concordant barriers related to the feasible set of points. The
arithmetic complexity of their method is

O

(
log

1

ε

√
ϑN
)

(5.5.12)

where N is the arithmetic complexity of a single Newton iteration step, ϑ is the so-called constant of self-
concordeness of the barriers and ε is the target precision. Before we go into each of the terms, we mention
that for sparse matrix representations, it is possible to accelerate the speed of the Newton iteration, i.e. the
step of solving the system of linear equations

Ax = b where A ∈ Rm×m and x, b ∈ Rm (5.5.13)

from O(m3) to O(m2).
Unfortunately, for general convex programming problems there is no constructive general-purpose barrier

construction method, merely existence proofs. Fortunately, Grant, Boyd, and Ye [GBY06] developed the
DCP framework which automatically constructs suitable barriers for the user. Moreover, DCP also auto-
matically provides the starting feasible point which is itself a nontrivial problem in general. As its price,
the user is obliged to provide a certificate that the constructed problem is convex, i.e. express all convex
functions in terms of a predefined set of elementary convex functions.

75



In our implementation, we rely on two particular solvers, a second-order (i.e. using second-order deriva-
tives) Embedded Conic Solver (ECOS) [DCB13] and recently developed first-order (i.e. using only first-order
derivatives) Splitting Conic Solver (SCS) algorithm [ODo+16]. The conversion of the DCP problem into its
standard form is done using cvxpy, a Python-embedded modelling language for disciplined convex program-
ming [DB16].

Proof of Theorem 5.4.4. We start with showing that the tuning procedure can be effectively represented in
the framework of DCP.

In our case, every inequality takes the form

ci > log

(
m∑
i=1

e`i(c,z)

)
(5.5.14)

where `i(c, z) are some linear functions. Appreciably, the log-sum-exp function belongs to the set of admis-
sible constructions of the DCP framework.

Converting the tuning problem into DCP involves creating some slack variables. For each product of two
terms X × Y we create slack variables for X and Y which are represented by the variables ξ and η in the
log-exp realm as

eξ = X and eη = Y . (5.5.15)

Next, we replace X × Y by eξ+η as composition of addition and exponentiation is a valid DCP program.
Since every expression in systems corresponding to considered combinatorial classes is a sum of products, the
corresponding restriction (5.5.14) is converted to a valid DCP constraint using the elementary log-sum-exp
function.

The sequence operator Seq(A) which converts a generating function A(z) into (1 − A(z))−1 is unfolded
by adding an extra equation into the system in form of

D := SeqA(z) whereas D = 1 +AD . (5.5.16)

Two additional constructions, MSet and Cyc are treated in a similar way. Infinite sums are replaced by finite
ones because the difference in the distribution of truncated variables is a negative exponent in the truncation
length, and hence negligible.

Using the DCP method, the constant of self-concordness of the barriers is equal to ϑ = O(L), where L is
the length of the problem description. This includes the number of combinatorial classes, number of atoms
for which we control the frequency and the sum of lengths of descriptions of each specification, i.e. their
overall length. In total, the complexity of optimisation can be therefore crudely estimated as

O

(
L3.5 log

1

ε

)
. (5.5.17)

Certainly, the complexity of tuning is polynomial, as stated. We emphasise that in practice, using sparse
matrices this can be further reduced to O(L2.5 log(1/ε)).

Remark 5.5.2. Weighted partitions, one of our previous applications, involves a multiset operatorMSet>1(Z1+
· · ·+Zd) which generalises to Seq(C1)Seq(C2) · · · Seq(Cd)−1 and does not immediately fall into the category
of admissible operators as it involves subtraction. This is a general weak point of Boltzmann sampling involv-
ing usually a huge amount of rejections, in consequence substantially slowing down the generation process.
Moreover, it also disables our convex optimisation tuning procedure because the constructions involving the
minus sign cease to be convex and therefore do not fit the DCP framework.

We present the following change of variables for this operator, involving a quadratic number of slack
variables. The Seq(Ci) operator yielding the generating function (1−Ci(z))−1 is replaced by (1 + Si) where
Si satisfies

Si = Ci + SiCi . (5.5.18)
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Next, we expand all of the brackets in the product
∏d
i=1(1 + Si)− 1. Consequently, we define the following

arrays Pi,j and Qi,j : 
P1,j = Cj , j ∈ {1, . . . , d}
Qk,d = Pk,d, k ∈ {1, . . . , d}
Qk,j = Pk,j +Qk,j+1, j ∈ {k, . . . , d− 1}, k ∈ {1, . . . , d}
Pk,j = Cj−k+1 · Qk−1,j , j ∈ {k, . . . , d− 1}, k ∈ {2, . . . , d} .

(5.5.19)

Semantically, as in § 10.6.4, (Pi,j)dj=k and (Qi,j)dj=k denote the summands inside symmetric polynomials
Q1,1 = S1 + S2 + . . .+ Sd ,

Q2,2 = S1(S2 + . . .+ Sd) + S2(S3 + . . .+ Sd) + . . .+ Sd−1Sd ,

Q3,3 = S1(S2S3 + . . .+ Sd−1Sd) + . . .+ Sd−2Sd−1Sd
(5.5.20)

and the auxiliary partial sums used to recompute the consequent expressions, respectively. So for instance
when d = 5 we obtain

P =



S1 S2 S3 S4 S5

0 S1(S2 + . . .+ S5) . . . S3(S4 + S5) S4S5

0 0 S1(. . .) S2(S3(S4 + S5) + S4S5) S3S4S5

0 0 0 S1(. . .) S2 . . .S5

0 0 0 0 S1 . . .S5


. (5.5.21)

The union of classes in each row gives corresponding symmetric polynomial Qk,k, and the partial sum of
elements in the row gives the elements of Q.

Finally, the expression
∏d
i=1(1 + Si) − 1 is replaced by the sum of elementary symmetric polynomials

Q1,1 +Q2,2 + · · ·+Qd,d where we have (combinatorially)

Qj,j =
∑

16i1<...<ij6d

Si1 · · · Sij . (5.5.22)

We emphasise that the last sum is not meant to be implemented in practice in a näive way as it would
take an exponential amount of time to be computed.

5.5.3 Tuning precision.
In this section, we only work with algebraic systems that meet the certain regularity conditions from Drmota–
Lalley–Woods Theorem [Drm97].

Proposition 5.5.1. Consider a multiparametric combinatorial specification

Y = Φ(Y ,Z,U) (5.5.23)

whose corresponding system of equations is either rational or algebraic. Suppose that we sample objects
from the class F = Y1 with target expected sizes (n, ν1n, . . . , νdn), where νi are constants, n → ∞. Let
F (z,u) be the multivariate generating function corresponding to the class F , and let (z∗,u∗) be the target
tuning vector. Then, there exists ε = Θ(1/Poly(n)) such that the points (z,u) from the ε-ball centered at
(z∗,u∗) intersected with the set of feasible points{

(z,u) ∈ R1+d | Y (z,u) > Φ(Y (z,u), z,u), ‖(z∗ − z,u∗ − u)‖ 6 ε
}

yield expectations within O(1) of target expectations:

zF ′z(z,u)/F (z,u) = n+O(1) ,

uiF
′
ui(z,u)/F (z,u) = νin+O(1), i ∈ {1, . . . , d} .
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Proof. Let us show that z∗, as a function of n, satisfies{
z∗(n) ∼ ρ(1− α/n), F is rational;
z∗(n) ∼ ρ(1− C/n2), F is algebraic.

(5.5.24)

Here, α is a positive integer depending on the rational system, C is a generic constant. We also note that the
same asymptotics is valid for each coordinate of the vector u∗(n), up to multiplicative constants depending
on νi and the values of α and C.

For rational systems, there exist analytic functions β(z,u), ρ(u) and a positive integer α such that

F (z,u) ∼ β(z,u)(1− z/ρ(u))−α , z → ρ(u) . (5.5.25)

After substituting the asymptotic expansion (5.5.25) into (5.3.6), we obtain the first part of (5.5.24).
For algebraic systems, according to Drmota–Lalley–Woods Theorem [Drm97], there exist analytic func-

tions α(z,u), β(z,u), ρ(u) such that as z → ρ(u),

F (z,u) ∼ α(z,u)− β(z,u)(1− z/ρ(u))1/2 . (5.5.26)

Again, substituting this asymptotic expansion into (5.3.6), we obtain

z∗(n)
β

2ρα

(
1− z∗(n)

ρ

)−1/2

∼ n . (5.5.27)

Taking into account that z∗(n) = ρ + o(1), this implies the second part of (5.5.24). Similarly, this can be
applied to each coordinate of u, not only to z.

Let us handle the tuning precision. We use the mean value theorem to bound ε. Let m = n + O(1).
Then,

ε2 > ‖(z∗(n)− z∗(m),u∗(n)− u∗(m))‖2 = (z∗(n)− z∗(m)2 +

d∑
i=1

(u∗i (n)− u∗i (m))2 .

By the mean value theorem, there exist numbers (n′i)
d
i=0 from the interval [n,m] such that

z∗(n)− z∗(m) = (n−m)
dz∗

dn
(n′0) ,

u∗i (n)− u∗i (m) = (n−m)
du∗i
dn

(n′i), i ∈ {1, . . . , d} .

Thus, as n−m = O(1), we obtain

ε2 > O(1)

[(
dz∗

dn
(n′0)

)2

+

d∑
i=1

(
du∗i
dn

(n′i)

)2
]
.

Since n′i = n + O(1), after substituting (5.5.24) and expressing the derivatives, we obtain the bound
ε = O(n−2) for rational grammars and ε = O(n−3) for algebraic specifications.

Remark 5.5.3. If one uses the anticipated rejection principle for sampling the objects of approximate size
n + O(1), in effect rejecting objects smaller than n − O(1) and “killing” the generation of objects whose
size exceeds n + O(1), it is possible to have a more relaxed bound ε = O(n−2) for the case of algebraic
specifications. Even though the expected size of generated objects will be smaller than n, so that we will
need a large number of restarts, the total amount of generated atoms will be nevertheless linear in n. We
refer to [BGR15, Theorem 4.1] for further discussion.
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Remark 5.5.4. Under an extra frequency rejection (independently of the structure size) it is not possible
to get rid of the assumption of strong connectivity and get a general estimate on the complexity of rejection-
based sampling for arbitrary combinatorial specifications. Let us recall that Banderier, Bodini, Ponty and
Bouzid give combinatorial classes with non-continuous parameter distributions [Ban+12]. For instance,
consider the combinatorial class

F = Seq(Z3)Seq(UZ3) + Seq(U2Z3)Seq(U3Z3) (5.5.28)

in which all the structures have parameter frequencies in the intervals (0, 1
3 ) and ( 2

3 , 1). Certainly, tuning
the sampler for a target frequency inside the interval ( 1

3 ,
2
3 ) yields a rejection sampler which never stops as

there is no structures of demanded frequency.
For this reason we restrict our attention on two important subclasses of combinatorial specifications,

i.e. strongly connected rational and algebraic languages. Due to Bender and Richmond [BR83] both classes
follow a multivariate Gaussian law with linear expectation and standard deviation. In consequence, corre-
sponding multiparametric Boltzmann samplers work in linear time if we accept a linear tolerance for the size
[(1− ε)n, (1 + ε)n] and a square root tolerance for the parameters [f − κ/

√
n, f + κ/

√
n].
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Chapter 6

Phase transitions in graphs with degree
constraints
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This chapter follows [DR18]. We show that by restricting the degrees of the vertices of a graph to an
arbitrary set ∆, the threshold point α(∆) of the phase transition for a random graph with n vertices and
m = α(∆)n edges can be either accelerated (e.g., α(∆) ≈ 0.381 for ∆ = {0, 1, 4, 5}) or postponed (e.g.,
α({20, 21, · · · , 2k, · · · }) ≈ 0.795) compared to a classical Erdős–Rényi random graph with α(Z>0) = 1

2 . In
particular, we prove that the probability of graph being nonplanar and the probability of having a complex
component, goes from 0 to 1 as m passes α(∆)n. We investigate these probabilities and also different graph
statistics inside the critical window of transition (diameter, longest path and circumference of a complex
component).

6.1 Overview of the phase transition in graphs with degree con-
straints

6.1.1 Shifting the Phase Transition

Consider a random Erdős–Rényi graph G(n,m) [ER60], that is a graph chosen uniformly at random among
all simple graphs built with n vertices labeled with distinct numbers from {1, 2, . . . , n}, and m edges. The
range m = 1

2n(1 + µn−1/3) where n→∞, and µ depends on n, is of particular interest since there are three
distinct regimes, according to how the crucial parameter µ grows as n is large:
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• as µ→ −∞, the size of the largest component is of order Θ(log n), and the connected components are
almost surely trees and unicyclic components;

• next, inside what is known as the critical window |µ| = O(1), the largest component size is of order
Θ(n2/3) and complex structures (nonempty set of connected components having strictly more edges
than vertices) start to appear with significant probabilities;

• finally, as µ → +∞ with n, there is typically a unique component of size Θ(n) called the giant
component.

Since the article of Erdős and Rényi [ER60], various researchers have studied in depth the phase transition
of the Erdős–Rényi random graph model culminating with the masterful work of Janson, Knuth,  Luczak,
and Pittel [Jan+93] who used enumerative approach to analyze the fine structure of the components inside
the critical window of G(n, m).

The last decades have seen a growth of interest in delaying or advancing the phase transitions of random
graphs. Mainly, two kinds of processes have been introduced and studied:

a) the Achlioptas process where models of random graph are obtained by adding edge one by one but
according to a given rule which allows to choose the next edge from a set of candidate edges [BF01;
RW17],

b) the given degree sequence models where a sequence (d1, · · · , dn) of degrees is given and a simple graph
built on n vertices is uniformly chosen from the set of all graphs whose degrees match with the sequence
di (see [Rio12; MR95; HM12; Joo+16]).

In [BF01; RW12; RW17], the authors studied the Achlioptas process. Bohman and Frieze [BF01] were
able to show that there is a random graph process such that after addingm = 0.535n > 0.5n edges the size of
the largest component is (still) polylogarithmic in n which contrasts with the classical Erdős–Rényi random
graphs. Initially, this process was conjectured to have a different local geometry of transition compared to
classical Erdős–Rényi model, but Riordan and Warnke [RW12; RW17] were able to show that this is not the
case. Next, in the model of random graphs with a fixed degree sequence D = (d1, · · · , dn), Joos, Perarnau,
Rautenbach, and Reed [Joo+16] proved that a simple condition that a graph with degree sequence D has a
connected component of linear size, is that the sum of the degrees in D which are not 2 is at least λ(n) for
some function λ(n) that goes to infinity with n.

In the current work, our approach is rather different. We study random graphs with degree constraints
that are graphs drawn uniformly at random from the set of all graphs with given number of vertices and
edges with all vertices having degrees from a given set ∆ ⊆ Z>0, with the only restriction 1 ∈ ∆, which we
discuss below. De Panafieu and Ramos [dPR16] calculated asymptotic number of such graphs using methods
from analytic combinatorics. Using their asymptotic results, we prove that random graphs with degrees from
the set ∆ have their phase transition shifted from the density of edges m

n = 1
2 to m

n = α for an explicit and
computable constant α = α(∆) and the new critical window of transition becomes m = αn(1± µn−1/3) .

In addition, we also prove that the structure of such graphs inside this crucial window behaves as in the
Erdős–Rényi case. For instance, we prove that extremal parameters such as the diameter, the circumference
or the longest path are of order Θ(n1/3) around m = αn. The size of complex components of our graphs are
of order Θ(n2/3) as µ is bounded. A very similar result but about the diameter of the largest component of
G(n, p = 1

n + µ
n4/3 ) has been obtained by Nachmias and Peres [NP08] (using very different methods).

In the seminal paper of Erdős and Rényi, amongst other non-trivial properties, they discussed the pla-
narity of random graphs with various edge densities [ER60]. The probabilities of planarity of Erdős-Rényi
random graphs inside their window of transition have been since then computed by Noy, Ravelomanana, and
Rué [RRN13]. In the current work, we extend this study by showing that the planarity threshold shifts from
n
2 for classical random graphs to αn for graphs with degrees from ∆. More precisely, first we show that such
objects are almost surely planar as µ goes to −∞ and non-planar as µ tends to +∞. Next, as function of µ,
we compute the limiting probability that random graphs of degrees in ∆ are planar as µ = O(1).
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Our work is motivated by the following research questions: (i) what can be the contributions of analytic
combinatorics to study constrained random graphs? (ii) the birth of the giant component often corresponds
to drastic changes in the complexities of several algorithmic optimization / decision problems on random
graphs, so by tuning the thresholds one can shift the location of hard random instances.

6.1.2 Preliminaries

The excess of a connected graph is the number of its edges minus the number of its vertices. For example,
connected graphs with excess −1 are trees, with excess 0 — graphs with one cycle (also known as unicycles
or unicyclic graphs), connected bicycles have excess 2, and so on (see Figure 6.1). Connected graph always
has excess at least −1. A connected component with excess at least 1, is called a complex component. The
complex part of a random graph is the union of its complex components.

2 1

3

4

−1

4 1

3

2

0

1

3

4

6

5

2

1

1
2

4

3

2

Figure 6.1: Examples of connected labeled graphs with different excess. As a whole, can be considered as
a graph with total excess −1 + 0 + 1 + 2 = 2

Next, we introduce the notion of a 2-core (the core) and a 3-core (the kernel) of a graph. The 2-core is
obtained by repeatedly removing all vertices of degree 1 (smoothing). The 3-core is obtained from 2-core
by repeatedly replacing vertices of degree two with their adjacent edges by a single edge connecting the
neighbors of deleted vertices (we call this a reduction procedure). A 3-core can be a multigraph, i.e. there
can be loops and multiple edges. There is only a finite number of connected 3-cores with a given excess
[Jan+93]. The inverse images of vertices of 3-core under the reduction procedure, are called corner vertices
(cf. Figure 6.3). A 2-path is an inverse image of an edge in a 3-core, i.e. a path connecting two corner
vertices.

The circumference of a graph is the length of its longest cycle. A diameter of a graph is the maximal
length of the shortest path taken over all distinct pairs of vertices. It is known that the problems of finding
the longest path and the circumference are NP-hard.

Random graph with degree constraints is a graph sampled uniformly at random from the set of all possible
graphs Gn,m,∆ having m edges and n vertices all of degrees from the set ∆ = {δ1, δ2, . . .} ⊆ {0, 1, 2, . . .},
see Figure 6.2. The set ∆ can be finite or infinite. In this work, we require that 1 ∈ ∆. This technical
condition allows the existence of trees and tree-like structures in the random objects under consideration.
We don’t know what happens when 1 /∈ ∆.
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Figure 6.2: Random labeled graph from G26,30,∆ with the set of degree constraints ∆ = {1, 2, 3, 5, 7}
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The set Gn,m,∆ is (asymptotically) nonempty if and only if the following condition is satisfied [dPR16]:

(C) Denote gcd(d1 − d2 : d1, d2 ∈ ∆) by periodicity p. Assume that the number m of edges grows linearly
with the number n of vertices, with 2m/n staying in a fixed compact interval of ] min(∆),max(∆)[,
and p divides 2m− n ·min(∆).

To a given arbitrary set ∆ ⊆ {0, 1, 2, . . .}, we associate the exponential generating function (egf) ω(z):

SET∆(z) = ω(z) =
∑
d∈∆

zd

d!
. (6.1.1)

The domain of the argument z of this function can be either considered a subset [0, R) of the real axis or
some subset of the complex plane, depending on the context. The function φ0(z) = zω′(z)

ω(z) , which is called
the characteristic function of ω(z), is non-decreasing along real axis [FS09, Proposition IV.5], as well as the
characteristic function φ1(z) = zω′′(z)

ω′(z) of the derivative ω′(z).
The value of the threshold α, which is used in all our theorems, is a unique solution of the system of

equations {
φ1(ẑ) = 1,

φ0(ẑ) = 2α.
(6.1.2)

A unique solution ẑ of φ1(z) = 1, z > 0 always exists provided that 1 ∈ ∆. This solution is computable.

6.2 Structure of Connected Components
Recall that given a set ∆, its egf is defined as ω(z) =

∑
d∈∆ zd/d!, and characteristic function of ω(z) and

its derivative ω′(z) are given by φ0(z) = zω′(z)/ω(z), φ1(z) = zω′′(z)/ω′(z).

Theorem 6.2.1. Given a set ∆ with 1 ∈ ∆, let α be a unique positive solution of (6.1.2). Assume that
m = αn(1 + µn−1/3). Suppose that Condition Section 6.1.2 is satisfied and Gn,m,∆ is a random graph from
Gn,m,∆.

Then, as n→∞, we have

1. if µ→ −∞, |µ| = O(n1/12), then

P(Gn,m,∆ has only trees and unicycles) = 1−Θ(|µ|−3) ; (6.2.1)

2. if |µ| = O(1), i.e. µ is fixed, then

P(Gn,m,∆ has only trees and unicycles)→ constant ∈ (0, 1) , (6.2.2)
P(Gn,m,∆ has a complex part with total excess q)→ constant ∈ (0, 1), (6.2.3)

and the constants are computable functions of µ;

3. if µ→ +∞, |µ| = O(n1/12), then

P(Gn,m,∆ has only trees and unicycles) = Θ(e−µ
3/6µ−3/4) , (6.2.4)

P(Gn,m,∆ has a complex part with excess q) = Θ(e−µ
3/6µ3q/2−3/4) . (6.2.5)

Proof (Sketched). Consider a graph composed of trees, unicycles and a collection of complex connected
components. Fix the total excess of complex components q. Then, there are exactly (n − m + q) trees,
because each tree has an excess −1.

Generating functions for each of these components are given by Lemma 2.3.1 and Lemma 2.3.2: we
enumerate all possible kernels and then enumerate graphs that reduce to them under pruning and smoothing.
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Let U(z) be the generating function for unrooted trees, V (z) be the generating function for unicycles, Ej(z)
be the generating functions for connected graphs with excess j. We calculate the probability for each
collection (q1, . . . , qk), while the total excess is

∑k
j=1 jqj = q. Accordingly, the probability that the process

generates a graph with the described property can be expressed as the ratio

n! · |Gn,m,∆|−1

(n−m+ q)!
[zn]U(z)n−m+qeV (z)E

q1
1 (z)

q1!
. . .

Eqkk (z)

qk!
. (6.2.6)

Then we use an approximation of Ej(z) from Corollary 2.3.1 and Lemma 2.3.2 and apply Corollary 3.2.1
with y = 1

2 + 3q in order to extract the coefficients. Note that our approach is derived from the methods
from [Jan+93], and so some of our proofs are sketched.

6.3 Shifting the Planarity Threshold

Theorem 6.3.1. Under the same conditions as in Theorem 6.2.1 with a number of edgesm = αn(1+µn−1/3),
let p(µ) be the probability that Gn,m,∆ is planar.

Then, as n→∞, we have uniformly for |µ| = O(n1/12):

1. p(µ) = 1−Θ(|µ|−3), as µ→ −∞;

2. p(µ)→ constant ∈ (0, 1), as |µ| = O(1), and p(µ) is computable;

3. p(µ)→ 0, as µ→ +∞.

Proof. The graph is planar if and only if all the 3-cores (multigraphs) of connected complex components
are planar. As |µ| = O(n1/12), Corollary 2.3.1 implies that for asymptotic purposes it is enough to consider
only cubic regular kernels among all possible planar 3-cores. Let G1(z) be an egf of connected planar cubic
kernels. The function G1(z) is determined by the system of equations given in [RRN13], and is computable.
An egf for sets of such components is given by G(z) = eG1(z). We give several first terms of G(z) according
to [RRN13]:

G(z) =
∑
q>0

gq
z2q

(2q)!2
= 1 +

5

24
z2 +

385

1152
z4 +

83933

82944
z6 +

35002561

7962624
z8 + . . . (6.3.1)

Thus, the number of planar cubic kernels with total excess q is given by

(2q)![z2q]eG1(z) = (2q)![z2q]G(z) =
gq

(2q)!
.

In order to calculate p(µ), we sum over all possible q > 0 and multiply the probabilities that the 3-core is a
planar cubic graph with excess q by the conditional probability that a random graph has planar cubic kernel
of excess q.

The probability that Gn,m,∆ is planar on condition that the excess of the complex component is q, is
equal to

n!|Gn,m,∆|−1

(n−m+ q)!
[zn]U(z)n−m+qeV (z) gq

(2q)!

(T3(z))2r

(1− T2(z))3r
. (6.3.2)

We can apply Corollary 3.2.1 and sum over all q > 0 in order to obtain the result:

p(µ) ∼
√

2π
∑
q>0

gqt
2q
3 A∆(3q + 1

2 , µ) , (6.3.3)

where A∆(3q + 1
2 , µ) and the constant t3 are from Corollary 3.2.1. The probabilities on the borders of the

transition window, i.e. |µ| → ∞ can be obtained from the properties of the function A∆(y, µ).
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6.4 Statistics of the Complex Component Inside the Critical Win-
dow

Theorem 6.4.1. Under the same conditions as in Theorem 6.2.1, suppose that |µ| = O(1), m = αn(1 +
µn−1/3). Then, the longest path, diameter and circumference of the complex part are of order Θ(n1/3) in
probability, i.e. for each mentioned random parameter there exist computable (see Lemma 6.6.1) constants
A,B > 0 depending on ∆ such that the corresponding random variable Xn satisfies ∀λ > 0

P
(
Xn /∈ n1/3(A±Bλ)

)
= O(λ−2) . (6.4.1)

Figure 6.3: Diameter, longest path and circumference of a complex component. The large vertices like
are the corner vertices

Proof. Recall that a 2-path is a path connecting two corner vertices inside a complex component, see Fig-
ure 6.3. In Lemma 6.6.1 we prove that the length of a randomly uniformly chosen 2-path is Θ(n1/3) in
probability. This lemma also gives the explicit expressions for A and B.

From Lemma 6.6.4 we obtain that the maximum height of sprouting tree over the complex part is also
Θ(n1/3) in probability. Since the total excess of the complex component is bounded in probability as µ stays
bounded, and the sizes of the kernels are finite, we can combine these two results to obtain the statement of
the theorem, because all the three parameters come from adding/stitching several 2-paths and tree heights.

6.5 Simulations

We considered random graphs with n = 1000 vertices, and various degree constraints. The random generation
procedure of such graphs has been explained by de Panafieu and Ramos in [dPR16] and for our experiments,
we implemented the recursive method. We note that this kind of sampling is not exact in the sense that the
probability of obtaining a simple graph is uniform only in asymptotics.

The generator first draws a sequence of degrees and then performs a random pairing on half-edges, as in
configuration model [Bol80]. We reject the pairing until the multigraph is simple, i.e. until there are no loops
and multiple edges. As |µ| = O(1), expected number of rejections is asymptotically exp

(
− 1

2φ1(ẑ)− 1
4φ

2
1(ẑ)

)
, which is exp(−3/4) in the critical window, and in the subcritical phase it is less.

Each sequence (d1, . . . , dn) is drawn with weight
∏n
v=1 1/(dv)!. First, we use dynamic programming to

precompute the sums of the weights (Si,j) : i ∈ [0, n], j ∈ [0, 2m] using initial conditions and the recursive
expression:

Si,j =
∑

d1+...+di=j

d1,...,di∈∆

i∏
v=1

1

dv!
, Si,j =


1, (i, j) = (0, 0) ,

0, i = 0 or j < 0 ,∑
d∈∆

Si−1,j−d

d!
, otherwise .

(6.5.1)
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Then the sequence of degrees is generated according to the distribution

P(dn = d) =
Sn−1,2m−d

d!Sn,2m
. (6.5.2)

We made plots for distributions of different parameters for ∆ = {1, 3, 5, 7}, see Figure 6.4.

(a) Largest excess (b) Largest component size (c) Graph diameter

Figure 6.4: Results of experiments

6.6 Analytic Tools

6.6.1 Method of Moments

In order to study the parameters of random structures, we apply the marking procedure introduced in [FS09].
We say that the variable umarks the parameter of random structure in bivariate egf F (z, u) if n![znuk]F (z, u)
is equal to number of structures of size n and parameter equal to k. In this section we consider such pa-
rameters of a random graph as the length of 2-path, which corresponds to some edge of the 3-core, and the
height of random “sprouting” tree. If we treat the parameter as a random variable Xn then the factorial
moments can be calculated through an expression

EXn(Xn − 1) . . . (Xn − k + 1) =

dk

duk
[zn]F (z, u)

∣∣∣∣
u=1

[zn]F (z, 1)
. (6.6.1)

Recall that the number of graphs having n vertices, m edges, and fixed excess vector q = (q1, q2, . . .),
can be expressed as n-th coefficient of the generating function

U(z)n−m+q

(n−m+ q)!
eV (z)Eq(z) , (6.6.2)

where Eq(z) =
∏k
j=1

(Ej(z))
qj

qj !
, q =

∑k
j=1 jqj . This egf can be modified to count the moments of random

variable Xn.

6.6.2 Length of a Random 2-path

Let us fix the excess vector q = (q1, q2, . . . , qk). There are in total q = q1 + 2q2 + . . . + kqk connected
complex components and each component has one of the finite possible number of 3-cores (see [Jan+93]).
We can choose any 2-path, which is a sequence of trees, and replace it with of sequence of marked trees,
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see Figure 6.5. Let random variable Pn be the length of this 2-path. Since an egf for sequence of trees is
1

1−T2(z) , the corresponding moment-generating function E[uPn ] becomes

E[uPn ] =

n![zn]
U(z)n−m+q

(n−m+ q)!
eV (z)Eq(z)

1− T2(z)

1− uT2(z)

n![zn]
U(z)n−m+q

(n−m+ q)!
eV (z)Eq(z)

. (6.6.3)

Figure 6.5: Marked 2-path inside complex component of some graph

Lemma 6.6.1. Suppose that conditions of Theorem 6.2.1 are satisfied. Suppose that there are qj connected
components of excess j for each j from 1 to k. Denote by excess vector a vector q = (q1, q2, . . . , qk). Inside
the critical window m = αn(1 + µn−1/3), |µ| = O(1), the length Pn of a random (uniformly chosen) 2-path
is Θ(n1/3) in probability, i.e.

P
(
Pn /∈ n1/3t3(B1 ± λB2)

)
6

1

(λ+ o(1))2
, (6.6.4)

t3 = ẑ
ω′′′(ẑ)

ω′(ẑ)
, B1 =

B∆(3q + 3
2 , µ)

B∆(3q + 1
2 , µ)

,

B2
2 =

B∆(3q + 5
2 , µ)B∆(3q + 1

2 , µ)−B2
∆(3q + 3

2 , µ)

B2
∆(3q + 1

2 , µ)
,

with function B∆(y, µ) from Lemma 3.2.3, q = q1 + 2q2 + . . .+ kqk.

Proof. The statement of the lemma is just an application of Chebyshev’s inequality to the first and the
second moment. Essentially, we need to prove that

EPn ∼ n1/3t3
B∆(3q + 3

2 , µ)

B∆(3q + 1
2 , µ)

, EPn(Pn − 1) ∼ n2/3 2 t23
B∆(3q + 5

2 , µ)

B∆(3q + 1
2 , µ)

, (6.6.5)

which is just a consequence of Lemma 3.2.3 and Eq. (6.6.1).

6.6.3 Height of a Random Sprouting Tree
Let κ(z) = ω′(z). Consider recursive definition for the generating function of simple trees whose height
doesn’t exceed h:

T [h+1](z) = zκ(T [h](z)) , T [0](z) = 0 . (6.6.6)

The framework of multivariate generating functions allows to mark height with a separate variable u so that
the function

F (z, u) =

∞∑
n=0

zn

n!

n∑
h=0

A[h]
n uh (6.6.7)

is the bgf for trees, where A[h]
n stands for the number of simple labelled rooted trees with n vertices, whose

height equals h.
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Flajolet and Odlyzko [FO82] consider the following expressions:

H(z) =
d

du
F (z, u)

∣∣∣∣
u=1

, Ds(z) =
ds

dus
F (z, u)

∣∣∣∣
u=1

. (6.6.8)

Generally speaking, H(z) = D1(z) is a particular case of Ds(z), but their analytic behaviour is different for
s = 1 and s > 2.

Lemma 6.6.2 ([FO82, pp. 42–50]). The functions H(z) and Ds(z), s > 2 satisfy

H(z) ∼ α log ε(z) , Ds(z) ∼ (ẑ)−1sΓ(s)ζ(s)ε−s+1(z) , (6.6.9)

α = 2
κ′(ẑ)
κ′′(ẑ)

, ε(z) = ẑ

(
1− z

ρ

)1/2(
2κ′′(ẑ)
κ(ẑ)

)1/2

, ρ = ẑκ−1(ẑ) = (κ′(ẑ))−1.

Here, Γ(s) is a gamma-function, and ζ(s) is Riemann zeta function.

We don’t represent their proof here, but would like to remark that it has great methodological impact.
For our purposes we need the asymptotic equivalence ∼ only in the circle of analyticity |z| < ρ.

Recall that
T1(z) = zω′(T1(z)) , T`(z) = zω(`)(T1(z)) , ` > 0 (6.6.10)

From local expansion at z = ρ of z = z(T1) it is easy to show that

z ∼ ρ− (T1(z)− ẑ)2

(
κ′′(ẑ)ẑ
2κ2(ẑ)

)
(6.6.11)

and consequently, since Tk(z) = zκ(k)(T1(z)),

T1(z) = ẑ −
√

2κ
κ′′

√
1− z

ρ
+O(1− zρ−1) , (6.6.12)

T2(z) = 1−
√

2ẑκ′′

κ

√
1− z

ρ
+O(1− zρ−1) . (6.6.13)

So we have ε(z) ∼ ẑ1/2(1− T2(z)).
Actually, there are two kinds of sprouting trees that we have to distinguish: the first ones are attached

to the vertices with degree from ∆ − 2, and the second — to the vertices with degree from ∆ − 3, we will
treat these cases separately.

Now we can introduce random variables Hn(2), Hn(3) equal to the height of a randomly uniformly chosen
sprouting tree (of the first and second type respectively), conditioned on excess number q = (q1, q2, . . . , qk),
and their moment generating functions:

E[Hn(1)] =

[zn]U(z)n−m+qeV (z)Eq(z)
F(2)(z, u)

T2(z)

[zn]U(z)n−m+qeV (z)Eq(z)
, (6.6.14)

E[Hn(2)] =

[zn]U(z)n−m+qeV (z)Eq(z)
F(3)(z, u)

T2(z)

[zn]U(z)n−m+qeV (z)Eq(z)
, (6.6.15)

where F(2)(z, u) and F(3)(z, u) are the corresponding bgf for 2- and 3-sprouted trees.

Lemma 6.6.3. Around z = ρ the derivatives of F(2) and F(3) with respect to u at u = 1 can be expressed
as

ds

dus
F(2)(z, u)

∣∣∣∣
u=1

∼
z=ρ

κ′(ẑ)
κ′′(ẑ)

ds

dus
F (z, u)

∣∣∣∣
u=1

,

ds

dus
F(3)(z, u)

∣∣∣∣
u=1

∼
z=ρ

κ′(ẑ)
κ′′′(ẑ)

ds

dus
F (z, u)

∣∣∣∣
u=1

.
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Proof. We only present the main idea of the proof, omitting the technical details of how the error term is
treated — we refer to [FO82] for the details of transfer theorems and sum approximations.

Consider more general specification, where root degree can belong to the set Φ whose egf is given by
ϕ(z) =

∑
d∈Φ(d!)−1. As said before, let T [h](z) be an egf for trees of height 6 h given by Eq. (6.6.6). Then

the egf T [h]
Φ (z) for rooted trees, whose root belongs to Φ with height bounded by h, can be written as

T
[h+1]
Φ = zϕ(T

[h]
1 (z)) , T

[0]
Φ (z) = 0 . (6.6.16)

Then, there is a second-order Taylor expansion

TΦ(z)− T [h+1]
Φ (z) = z(T1(z)− T [h]

1 (z))ϕ′(T1(z))×
[
1− (T1 − T [h]

1 )
ϕ′′(T1)

2ϕ′(T1)
+O

(
(T1 − T [h]

1 )2
)]

.

Denoting T1 − T [h]
1 = eh(z), TΦ − T [h]

Φ = ẽh(z), we get asymptotic expansions

F (z, u) ∼ uT1(z) + (u− 1)z
∑
h>1

uheh(z)κ′(T1) , (6.6.17)

FΦ(z, u) ∼ uϕ(T1(z)) + (u− 1)z
∑
h>1

uheh(z)ϕ′(T1) , (6.6.18)

so in order to calculate the ratio of derivatives with respect to u at the vicinity of z = ρ we note that the
terms κ′(ẑ) and ϕ′(ẑ) provide the ratio of the coefficients of main asymptotics.

Lemma 6.6.4. Inside the critical window m = αn(1 + µn−1/3), |µ| = O(1), the maximal height Hn of a
sprouting tree, is of O(n1/3) in probability, i.e.

P
(

maxHn > λn1/3
)

= O(λ−2) . (6.6.19)

Actually, the average height of a sprouting tree (if the tree is taken uniformly at random) appears to be
Θ(log n) (which seems to be a new result), but when we take the maximum over all possible Θ(n1/3) trees,
and apply Chebyshev’s inequality, this factor disappears.

Proof of Lemma 6.6.4. We prove the statement for 2-sprouting trees (with root degree from ∆− 2), and for
3-sprouting trees the proof is the same up to a constant term.

The ratio of the expressions in the numerator and denominator can be treated in terms of Lemma 3.2.3.
After “Lagrangian” variable change T1(z) = t 7→ z the ratio in EHn(1) becomes proportional to

C1

∮
(1− φ1(z))1−yenh(z;r) log(1− φ1(z))dz/z

C2

∮
(1− φ1(z))1−yenh(z;r)dz/z

(6.6.20)

with y = 3q + 1
2 , and after the second variable change z = ẑe−sν , s = a+ it the main asymptotics term will

become (
C1

∮
(· · · )

)/(
C2

∮
(· · · )

)
∼ C̃1(µ) log n , (6.6.21)

For the second factorial moment we obtain

C̃2(µ)n1/3 +O(1 + |µ|4) , (6.6.22)

so from Chebyshev’s inequality:

P
(
|Hn(1) − C̃1 log n| > λC2n

1/6
)
6

1

(λ+ o(1))2
. (6.6.23)

Since 2-path length is Θ(n1/3) in probability, we can control the maximal tree height:

P(Hn > λC2n
1/3) = O(λ−2n−1/3) , P(maxHn > λC2n

1/3) = O(λ−2) . (6.6.24)
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Conclusion. We studied how to shift the phase transition of random graphs when the degrees of the nodes
are constrained by means of analytic combinatorics [dPR16; FS09].

We have shown that the planarity threshold of those constrained graphs can be shifted generalizing the
results in [RRN13]. We have also shown that when our random constrained graphs are inside their critical
window of transition, the size of complex components are typically of order n2/3 and all distances inside
the complex components are of order n1/3, thus our results about these parameters complement those of
Nachmias and Peres [NP08].

A few open questions are left open: for given threshold value α can we find a set {1} ⊂ ∆ ⊂ Z>0 delivering
the desired α? What happens if 1 /∈ ∆, for example what is the structure of random Eulerian graphs? What
happens when the generating function ω itself depends on the number of vertices? Given a sequence of degrees
d1, . . . , dn that allows the construction of a forest of an unbounded size, a first approach to study possible

relationship between the models can be the computation of the generating function ω(z) =
∑
i>0 weight(i)

zi

i!
for a suitable weight function corresponding to d1, . . . , dn.
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Chapter 7

The birth of the contradictory
component in random 2-SAT
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This chapter follows [Dov19].

7.1 Phase transition of the 2-SAT
The 2-SAT problem (see Definition 2.2.1) is the easiest case of the more general k-SAT problem which is
NP-complete for k > 3, and admits a linear-time algorithm for k = 2 [APT82]. However, already the
problem of maximising the number of satisfying assignments of the 2-SAT, known as MAX-2-SAT is known
to be NP-complete as well. The study of the phase transition in 2-SAT and MAX-2-SAT culminated in the
papers [Bol+01] and [Cop+04], where the critical width has been determined. Kim [Kim08] improved the
bounds and provided an exact constant for the subcritical case. Since then, it has been questioned whether
the structural similarities between the transitions in graphs, digraphs and 2-SAT exist. As an example, it is
known that for random graphs Gn,m with n vertices and m = n

2 (1 + µn−1/3) edges,

P(Gn,m contains only trees and unicycles) = 1− 5 + o(1)

24|µ|3
as µ→ −∞ with n,

for a random 2-SAT formula Fn,m with n variables and m = n(1 + µn−1/3) clauses,

P(Fn,m is satisfiable) = 1− 1 + o(1)

16|µ|3
as µ→ −∞ with n,
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and for random directed graphs Dn,m with n vertices and m = n(1 + µn−1/3) oriented edges,

P
(

every strong component in Dn,m is either
a vertex or a cycle of length O(n1/3µ−1)

)
→ 1 as µ→ −∞ with n,

where o(1) goes to zero as |µ| � n1/3 (the formula for random graphs requires |µ| � n1/12 and can be
further improved to |µ| � n1/3, see [HR11]). The factor 5/24 is obtained by adding the inverse numbers
of automorphisms 1/12 and 1/8 of the two possible cubic (i.e. 3-regular) multigraphs with 3 edges and 2
vertices, which appear as the only two possible cores at the point when a graph doesn’t anymore consist
only of trees and unicycles, see Section 2.2.2 and Remark 3.2.2 for an explanation of this phenomenon. A
different viewpoint on the giant component and satifsfiability has been proposed in [Mol08]. Clearly, the
structure of a critical implication digraph might not be similar to that of a critical simple graph or a critical
digraph, due to the presence of certain symmetries, which have been emphasised in [Kra07]. Nevertheless,
it still seems to be possible to draw certain structural similarities between the models.

We follow the approach of analytic combinatorics which was used to obtain the structure of random graph
at the point of the phase transition [FKP89; Jan+93; FSS04]. The approach makes use of the generating
function technique which gives a very clear structural vision of the corresponding combinatorial objects.
In addition to the aesthetic benefits (see e.g. a unifying approach for the upper bounds on satisfiability
threshold [Puy04]), it allows to give very precise asymptotic descriptions, often accompanied by complete
asymptotic expansions. In particular, inside the transition window, the probability that a random graph
doesn’t contain a complex component (i.e. consists only of trees and unicycles) has been expressed in terms
of Airy function which has appeared in many other contexts in analytic combinatorics [Ban+01; FSS04].
Another interpretation, using the fact that Airy function is linked to the area under a Brownian motion,
was discovered by Aldous [Ald97], see also [ABG12]. The enumeration of unsatisfiable 2-SAT formulae is
equivalent to forbidding a certain contradictory pattern (namely, the contradictory circuit, see Section 2.2.1).
Of the closest to our approach here is [Col+18] where the authors use the analytic approach to study the
containment problem for small subgraphs. Applying the analytic methods to the phase transitions of SAT-
formulae and directed graphs remains one of the important challenging problems.

The spine of a 2-CNF (see Definition 2.2.3) has been introduced in [Bol+01] as a useful tool for combi-
natorial analysis of the probability of satisfiability inside the critical window. Originally, the spine is defined
as the set of variables that are forced to take the FALSE value in any satisfying assignment. Later, the
spine has been shown to impact the complexity of the underlying decision problems in a more general set-
ting for various constraint satisfaction problems including k-XORSAT, graph bipartition problem, random
3-coloring [Sol; IBP05]. In our analysis of satisfiability we do not use the properties of the spine, but we find
this parameter interesting by itself. We obtain a new structural result about the spine of a random formula.

The chapter is structures as follows. In Section 7.2 we introduce the concept of sum-representation which
is used throughout the chapter. In this section, the main comparisons between simple graphs and implication
digraphs of 2-SAT are drawn, and the excess of a contradictory component is introduced. In Section 2.2.2
the classical symbolic method for generating functions of simple graphs is explained, along with its variations
for weakly connected directed graphs. In this section, the concept of compensation factor of a contradictory
component is introduced.

In Section 7.3, the actual asymptotic analysis is done. The main results of this chapter are formed
into Theorems 7.3.1 to 7.3.3. In Theorem 7.3.1 we prove that in the subcritical phase of the 2-SAT, if the
contradictory components are present, their kernels are typically cubic and that the asymptotic expansion
of the probability of satisfiability is linked to the compensation factors of such cubic components. In The-
orem 7.3.2 we prove that the number of contradictory variables, scaled by n1/3|µ|−1 follows a mixture of
Gamma laws, with the first nontrivial case being Gamma(3) with a scale parameter µ−1n1/3 corresponding
to the contradictory component of minimal possible excess 1. Finally, in Theorem 7.3.3 we classify the
spine literals according to the multiplicities of their paths to the complementary variables, and prove that a
negligible part of the spine can be removed in such a way that the remaining literals form a set of tree-like
structures.

Several naturally arising open problems and conjectures are described in Section 7.4, along with some
remarks on how the results presented in this chapter could be potentially extended. In Section 3.3 we
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present a “proof of concept” full asymptotic expansion of the saddle point lemma which allows in principle
to construct the full asymptotic expansion of the satisfiability.

7.2 Sum-representation of implication digraphs
For the study of the 2-SAT phase transition, it is convenient to consider digraphs with an even number
of vertices 2n with a special vertex labelling convention. Instead of the labels {n + 1, n + 2, . . . , 2n} we
conventionally use the synonyms {1, 2, . . . , n}. Under this re-assignment, the nodes with labels {1, 2, . . . , n}
correspond to Boolean literals {x1, x2, . . . , xn}, and the nodes with labels {1, . . . , n} correspond to the
negations of these literals {x1, . . . , xn}. Since the complementary of xi is xi, the same applies to the labels,
i = i.

Definition 7.2.1 (Conflicts in digraphs). We define a complementary of the edge x → y as y → x. We
shall say that a pair of complementary edges in a directed graph form a conflict . We say that a digraph is
conflict-free if there are no conflicting pairs of edges inside it, i.e. if no two edges are complementary.

Note that in the model that we consider, a random 2-CNF formula contains neither clauses of type (x∨x)
nor of (x ∨ x). We also require that every clause is present at most once. This implies that the underlying
implication digraph contains neither loops nor multiple edges.

2

1 2

3 3

1

+

2

1 2

3 3

1

=

1

2

3

1

2

3

Figure 7.1: Example of a sum representation digraph G and its complementary G whose edge-union G+G
gives an implication digraph.

Definition 7.2.2 (Sum-representation). A digraph G = (V,E) with 2n conventionally labelled vertices
V = {1, · · · , n, 1, · · · , n} and |E| = m edges is called a sum-representation digraph if it does not contain
loops, multiple edges, edges of type x → x and is conflict-free. The complementary digraph G of a sum-
representation digraph is obtained by replacing all the edges by their respective complementaries. We say
that G is a sum-representation of an implication graph G+G which is a digraph obtained by joining the sets
of edges of G and G (see Figure 7.1). Every implication digraph with 2m edges has 2m sum-representations,
since for each of the m clauses of the corresponding formula, 2 choices of complementary edges are available.
We denote the set of all sum-representation digraphs with 2n vertices and m oriented edges as D◦(2n,m).

Instead of implication digraphs with 2n vertices and 2m oriented edges we enumerate conflict-free digraphs
with 2n vertices and m edges. It is worth noticing that |F(n,m)| = 2−m|D◦(2n,m)|. Note also that
D◦(2n,m) ⊂ D(2n,m).

An edge rotation is a process of transformation of an edge x → y into its complementary edge y → x
(see Figure 7.2). We say that π1 is equivalent to π2 if it can be obtained by a sequence of edge rotations.
This means that π1 and π2 are both sum-representation of the same implication digraph.

7.2.1 The spine
Let y be a literal belonging to the spine of some formula F ∈ F(n,m), which means that y  y in the
implication digraph corresponding to F . Counting such literals y with the multiplicities of the corresponding
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Figure 7.2: Example of two equivalent sum-representations obtain by one edge rotation. An edge 1 → 3 is
replaced by its complementary 3→ 1.

paths y  y gives a larger number than just the cardinality of the spine, however, we are going to show that
in the subcritical phase, i.e. when m = n(1 + µn−1/3), µ → −∞, it gives asymptotically the same result,
see Theorem 7.3.3 and Corollary 7.3.4. The inherent reason behind this is that the majority of the spine
components form certain tree-like structures (see Figure 7.4).

Let us say that a path y  y is strictly distinct if all the vertices of the path, except y and y, are pairwise
strictly distinct. If y  y, it is not always possible to find a strictly distinct directed path from y to y, but
it is possible to split it into a few sections, each strictly distinct.

x xy y

Figure 7.3: A directed path from y to y is split into three strictly distinct sections.

Lemma 7.2.1 (Minimal spinal paths). Let y  y inside an implication digraph. Then there exists a literal
x (not necessarily distinct from y) such that y  x  x  y, the paths y  x and x  x are strictly
distinct and do not intersect with each other.

As depicted in Figure 7.3, each arrow represents a directed path with strictly distinct literals. Since
x x is strictly distinct, it has no intersection with its complementary path. It is convenient to denote by
x 1 x and x 2 x the two complementary versions of the path x x. We shall call every such quadruple
(y  x, x 1 x, x 2 x, x y) a minimal spinal path.

Proof. Without loss of generality assume that the path y  y does not pass through the same vertex twice.
Assume that the path y  y is formed as a sequence of edges y = a0 → a1, a1 → a2, . . . , a`−1 → a` = y. If
the path is strictly distinct, we can set y = x and the lemma is proven. Otherwise we choose x = ak where
k is the minimal index such that both ak and ak belong to the path y  y, and the path x  x is strictly
distinct. It is always possible to choose such an index: if the original path is not strictly distinct, we keep
choosing a smaller directed path connecting some literal x and its complementary, until we obtain a path of
length at most 2 for which the statement is obviously true since the implication digraph does not contain
loops and multiple edges. Note that under such a choice, the path y  x is also strictly distinct (except for
the vertices x and x), because otherwise it is possible to choose a smaller k. The corresponding part x y
can be constructed as a complementary of the path y  x.

Let σ be the random variable denoting the cardinality of the spine in a random formula F ∈ F(n,m).
Then, since the number of sum-representations of a single implication digraph with 2m edges is 2m, the
expected value of σ can be expressed as

Eσ =

∣∣{(G, x) | G ∈ D◦(2n,m), x x in G+G
}∣∣

|D◦(2n,m)|
.
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x x

Figure 7.4: For every literal y in a tree-like spine structure, there is a unique path y  y.

Since the spine literals can be characterised as the literals for which there exists a path connecting a literal
and its complementary, the counting of such literals can be handled though inclusion-exclusion. Accordingly,

Eσ =

∣∣{(G, y, p) | G ∈ D◦(2n,m); p is a minimal spinal path y  y in G+G
}∣∣

|D◦(2n,m)|

−
∣∣{(G, y, p1, p2) | G ∈ D◦(2n,m); p1, p2 are distinct minimal spinal paths y  y in G+G

}∣∣
|D◦(2n,m)|

+ · · · .

Consider a pattern p ∈ G, G ∈ D◦(2n,m) consisting of two paths y  x, x x, where all the literals on
the two paths are pairwise strictly distinct (except for x and x). Suppose that the pattern p has total length
`. Then, among 2m equivalent sum-representations of G, 2m−` sum-representations contain the pattern p
unaltered. Among 2` possible combinations of edge rotations of one of the ` edges of p only, there are exactly
2 possibilities that result in the same type of pattern, the second one obtained by converting the path x x
into its complementary.

Therefore, the number of sum-representation digraphs with a distinguished pattern p = y  x  x
of length ` counted with multiplicity 2` enumerates (with multiplicity 2-to-1) implication digraphs with a
distinguished minimal spinal path. This allows us to rewrite the first summand of Eσ as∣∣{(G, y, p) | G ∈ D◦(2n,m); p is a minimal spinal path y  y in G+G

}∣∣
|D◦(2n,m)|

=
1

2
·
∑
` 2` |{(G, y, x, p) | G ∈ D◦(2n,m); p is a distinguished pattern y  x x of length ` in G}|

|D◦(2n,m)|
.

All the subsequent summands of Eσ can be rewritten in the same manner as well, though it requires consid-
ering several cases for the mutual configuration of p1 and p2 and using possibly different factors instead of
1
2 for the multiplicities.

7.2.2 Classifying the contradictory components according to their excesses
Recall that contradictory circuits and variables are defined in Definition 2.2.3. If a variable x is contradictory,
it can belong to multiple contradictory circuits at the same time. When the complexity of a contradictory
component increases, the number of circuits simultaneously containing a given variable can grow exponen-
tially on its excess. However, we show that the excess grows very slowly in the subcritical phase of the 2-SAT
transition, so this technique allows to obtain some structural properties before the number of multiplicities
blows up.

Similarly to the excess of a complex component in a simple graph which equals to the number of its edges
minus the number of its vertices, we introduce the excess of a contradictory graph. (See Figures 7.5 to 7.8
for different kernels of contradictory components of excess 1 to 2.)

Definition 7.2.3 (Contradictory component and its excess). We call a digraph D with 2n conventionally
labelled vertices a contradictory digraph or a contradictory component if for its every edge e ∈ D its com-
plementary edge e is also in D, and every vertex x ∈ D implies its complementary: x  x. The excess
of a contradictory component is defined to be equal to the difference between the number of its edges and
vertices divided by 2. The excess of an empty graph is defined to be zero.
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Figure 7.5: First possi-
ble contradictory compo-
nent of excess 1.

x x

yy

Figure 7.6: Second possi-
ble contradictory compo-
nent of excess 1.
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Figure 7.7: A minimal
contradictory component
of excess 12−8

2 = 2.
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Figure 7.8: Contradic-
tory component of excess
2 which is not minimal.

In contrast with the phase transition of simple graphs, where the whole structure of the graph is known
with high probability, no such information is available for the phase transition of 2-SAT yet. On a positive
side, Kim has obtained the number of variables and clauses in a core of a random formula. In this work, we
focus on the contradictory component only.

In order to access the probability of satisfiability, we use the inclusion-exclusion method . We consider
minimal contradictory components which are contradictory implication digraphs that do not have any proper
contradictory subgraphs. Two examples of minimal contradictory components of excess 1 and 2 are given in
Figures 7.6 and 7.7, the arrows play the role of strictly distinct paths. Figure 7.8 represents a contradictory
strongly component of excess 2 which is not minimal.

Lemma 7.2.2. Let ξ denote the number of minimal contradictory components in a random implication
digraph corresponding to a random formula F ∈ F(n,m), counted with multiplicities and with possible
overlappings. Then, the probability of satisfiability of a random formula F ∈ F(n,m) can be expressed
using the principle of inclusion-exclusion:

P(F ∈ F(n,m) is SAT) = 1− En,mξ +
1

2!
En,mξ(ξ − 1)− 1

3!
En,mξ(ξ − 1)(ξ − 2) + · · · . (7.2.1)

Proof. A formula is satisfiable if and only if the contradictory component is empty, i.e. the number of minimal
contradictory components is equal to zero. Let N denote the total possible number of subgraphs in a digraph
with n vertices, and let Ei denote the event that ith subgraph forms a minimal contradictory component.
Using de Morgan’s rule and the inclusion-exclusion principle, we obtain

P(ξ = 0) = P(E1 ∧ · · · ∧ EN ) = 1− P(E1 ∨ · · · ∨ EN ) = 1−
N∑
i=1

P(Ei) +
∑
i<j

P(Ei ∧ Ej)− · · · .

Finally, we note that∑
i1<...<ik

P(Ei1 ∧ · · ·Eik) =

(
N

k

)
P(E1 ∧ · · · ∧ Ek) =

1

k!
En,mξ(ξ − 1) · · · (ξ − k + 1),

which finishes the proof.

The term Eξ(ξ − 1) denotes the expected number of pairs of minimal contradictory components, and
requires going through different possible cases of their mutual configuration. Further terms will provide even
more complicated combinatorial structures, but on the asymptotic level, they will all appear to be negligible
in the subcritical phase of the 2-SAT phase transition.
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Example 7.2.1. Figure 7.8 representing a contradictory component of excess 2 can be also considered as a
pair of contradictory components each of excess 1: the first one being x  w  x  z  y  y  z  x
with a double sequence y  y and a mirror path x  w  x, and the second one being described as
z  w  x  z  y  y  z with a double path y  y and a complementary sequence z  x  w  z.
In such a way, the first component of excess 1 is obtained by dropping the pair x w and w  z, and the
second – by dropping x w and w  x.

7.2.3 The case of the simplest minimal contradictory component

It is convenient to represent ξ from Lemma 7.2.2 as the sum ξ =
∑
r>1 ξr where ξr is the number of

distinguished minimal contradictory components of excess r in a random implication digraph.
We focus on the case r = 1 first. The expected value of ξ1 is equal to the number of implication

digraphs with a distinguished contradictory component of excess 1 (e.g. Figure 7.6) divided by the total
number of implication digraphs. In order to count the implication digraphs with distinguished contradictory
components, we are going to count their respective sum-representations and then divide by 2m which is
the number of sum-representations of a single implication digraph with m edges. Both numerator and
denominator of the total fraction are then divided by the same factor 2m which cancels out. In other words,
Eξ1 can be expressed as

Eξr =

∣∣∣{(G, p)
∣∣ G is a sum-representation digraph with 2n vertices and m edges

p is a minimal contradictory pattern of excess r in G+G

}∣∣∣∣∣{G | G is a sum-representation digraph with 2n vertices and m edges}
∣∣ . (7.2.2)

We further note that distinguishing a contradictory pattern in G+G can be replaced with distinguishing a
different contradictory pattern in a sum-representation digraph G if a proper multiplicity factor is used.

There are only two possible multigraphs which can result in cancelling of a contradictory digraph of
excess 1, depicted, respectively, in Figures 7.5 and 7.6. Accordingly, we consider two different cases.

First case. Consider a sum-representation digraph with a distinguished pattern of type depicted in Fig-
ure 7.9. Each arrow there represents a sequence of strictly distinct literals, and it is also required that all
the literals on both sequences (except x and x) are pairwise strictly distinct, and that the two distinguished
literals marked x and x are complementary. Suppose that the pattern has ` oriented edges. Then, among 2`

graphs obtained by edge rotations of the pattern, there are exactly 4 which belong to the same pattern: it
is possible to take a complementary of the path x  x which gives 2 possibilities, and the complementary
of the path x x.

Second case. Consider a sum-representation digraph with a distinguished pattern of type depicted
in Figure 7.10. Again, each arrow corresponds to a sequence, and all the literals on the three sequences
x x, x y, y  y are pairwise strictly distinct, except for x and x, and y and y, which are required to be
complementary. The literals x and y are also required to be strictly distinct. Again, if the total length of the
pattern is `, there are 8 sum-representations among 2` equivalent ones, such that these sum-representations
form the same pattern. Indeed, 4 options are given by replacing either of the two paths x  x and y  y
by its complementary. If the path x y is replaced by its complementary, then we obtain a different graph
constructed of the three sequences x  x, y  x, y  y which belongs to the same pattern if we swap the
variables x and y. No other combinations of edge rotations give the same pattern because it is required that
all the literals are pairwise strictly distinct.

x x

Figure 7.9: First sum-representation contradic-
tory pattern corresponding to Figure 7.5.

x x y y

Figure 7.10: Second sum-representation contradictory
pattern corresponding to Figure 7.6.

101



Suppose that a pattern (either from Figure 7.9 or from Figure 7.10) has ` edges and is a distinguished sub-
graph of a sum-representation digraph containingm edges in total. Then, among 2m equivalent, 2m−` contain
the pattern unaltered. Therefore, the number of sum-representation digraphs with a distinguished contradic-
tory pattern of length ` from Figures 7.9 and 7.10 counted with multiplicity 2` enumerates (with respective
multiplicities 1-to-4 and 1-to-8) implication digraphs with a distinguished contradictory digraph Figures 7.5
and 7.6 of excess 1.

Combining the two cases, we obtain a new expression for Eξ1:

Eξ1 =
1

4
·

∑∞
`=0 2`

∣∣∣{(G, p`) | G is a sum-representation digraph with 2n vertices and m edges
p` is a pattern from Figure 7.9 of length ` in G

}∣∣∣∣∣{G | G is a sum-representation digraph with 2n vertices and m edges}
∣∣

+
1

8
·

∑∞
`=0 2`

∣∣∣{(G, p`) | G is a sum-representation digraph with 2n vertices and m edges
p` is a pattern from Figure 7.10 of length ` in G

}∣∣∣∣∣{G | G is a sum-representation digraph with 2n vertices and m edges}
∣∣ .

As we shall see in Section 7.3, the contribution of the first summand is negligible. An intuitive way to see
why this happens is the following: the shape from Figure 7.5 can be obtained by contracting a path y  x
in Figure 7.6. Therefore, the first case is a degenerate case when the length of the corresponding path is
equal to zero and the literal x coincides with the literal y. In general, only the structures with cubic kernels
have dominant contribution.

A similar decomposition can be obtained for Eξr for any finite r. Instead the two presented cases, the
sum should be taken over all the possible minimal contradictory components of given excess r, divided by
a corresponding multiplicity factor, which plays the analog of a compensation factor for simple graphs. A
detailed explanation of the nature of such compensation factors is given in Section 2.2.3.

7.2.4 Incorporating relations between labels of vertices

We continue to use the labelling convention for digraphs and implication digraphs introduced in Section 7.2,
so that for digraphs having 2n vertices, the labels of the vertices are partitioned into the set of positive
literals {1, · · · , n} and negative ones {1, · · · , n}.

Definition 7.2.4 (Literal linking construction). Suppose that in a given family A of digraphs, each graph
G ∈ A contains two distinguished empty nodes, i.e. vertices for which we do not assign any labels and which
do not contribute to the total size of the graph. We define the family Λ[A] as the family obtained from A
by replacing the two empty nodes by complementary literals.

Lemma 7.2.3. If A(z) is the EGF of a given family A of digraphs with even number of nodes, two distin-
guished empty nodes (of size 0), then the EGF of Λ[A] is given by

Λ[A](z) := z

∫ z

0

A(t)dt. (7.2.3)

Proof. The number of graphs of size (2n − 2) from A is (2n − 2)![z2n−2] A(z). Then, the number of ways
to insert the complementary labels into two distinguished positions is 2n. The total number of graphs of
size 2n from the family Λ[A] is therefore 2n · (2n− 2)![z2n]z2A(z) = 1

2n−1 (2n)![z2n−2] A(z). We conclude by
noting that (2n)-th coefficient of z

∫ z
0

A(t)dt equals to 1
2n−1 [z2n−2] A(z) and multiplying by (2n)! gives the

total number of graphs of size 2n from Λ[A].

Remark 7.2.1. It is possible to insert more than one pair of complementary literals, in this case more than
one application of Λ is required. Naturally, in this case, it is required that the number of unlabelled empty
slots should be equal to two times the number of inserted complementary literals.
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7.3 Extracting the asymptotics

7.3.1 Contradictory components in simple digraphs
Before constructing the sum-representation digraphs with marked directed subgraphs, we start by construct-
ing the subcritical simple digraphs first. We are going to mark the same contradictory patterns, but without
an additional assumption that the paths are strictly distinct and that the digraph is conflict free, and without
excluding the edges x→ x.

As we will see later in Section 7.3.2, this set has a very similar structure to the set of sum-representation
digraphs D◦(2n,m): the number of edge conflicts in a random digraph D ∈ D(2n,m) asymptotically follows
a Poisson distribution with parameter 1/8. Excluding edge conflicts is equivalent to conditioning on the
value of this Poisson variable being zero.

We start by demonstrating a result directly related to the probability of satisfiability in the subcritical
phase, which is shown by Kim in [Kim08] to be asymptotically

P(F ∈ F(n,m) is SAT) = 1− 1 + o(1)

16|µ|3

for m = n(1 + µn−1/3), as µ→ −∞ with n, and |µ| = o(n1/3). In this section we give a new explanation of
the factor 1/16 and show how to extend this result to obtain a complete asymptotic distribution in powers
of |µ|−3.

The contradictory pattern that we are going to identify first, takes a form of three sequences x  x  
y  y (Figure 7.10). We start by considering the case when this pattern is a part of a weakly connected
component which is a tree (Figure 7.11).

Lemma 7.3.1. Consider simple digraphs G ∈ D(2n,m) with a distinguished contradictory pattern x  
x  y  y such that the weakly connected component containing this pattern is a tree, and there are no
weakly connected components whose non-oriented projections have positive excess. The proportion of such
digraphs among D(2n,m) where each such digraph is taken with weight 2`, where ` is the length of the
pattern, is

(2n)!

|D(2n,m)|
[z2n]z

∫
z

∫ [
U→(z)2n−m−1

(2n−m− 1)!
eV→(z) 8T→(z)4z−4

(1− 2T→(z))3

]
dz2 =

1

2|µ|3
+O(|µ|−6). (7.3.1)

Proof. The weakly connected component containing a distinguished pattern x  x  y  y can be repre-
sented as three sequences of trees, each sequence of length at least one, and an additional tree (Figure 7.11).
The generating function for one such sequence, equipped with a weight 2`, where ` is the length of this
sequence, is ∑

`>1

T→(z)`2` =
2T→(z)

1− 2T→(z)
.

Taking three such sequences and adding a triple multiple 2 corresponding to linking three directed edges
between the sequences, and by adding the last tree, we get an EGF 8T→(z)4

(1−2T→(z))3 . The next step is to divide
by z4 which corresponds to erasing the labels of the four distinguished nodes (which will later become the
labels x, x, y, and y).

The digraphs required in the current lemma are obtained as product of the family of directed trees and uni-
cycles and the constructed contradictory pattern, through literal linking construction (see Definition 7.2.4).
By applying the complementary label insertion operation Λ[A](z) = z

∫
A(z)dz from Lemma 7.2.3 twice, we

obtain the desired EGF. The (weighted) number of digraphs is obtained by taking the (2n)th coefficient of
the EGF.

Since the number of trees in the forest of directed trees (without the distinguished one) is (2n−m− 1),
the EGF of digraphs containing this forest and set of directed unicycles is then

U→(z)2n−m−1

(2n−m− 1)!
eV→(z),
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x x y y

Figure 7.11: The case when the weakly connected component of the contradictory pattern is a tree.

and multiplication by the EGF of the distinguished tree with removed nodes 8T→(z)4z−4

(1−2T→(z))3 and double appli-
cation of the complementary label insertion operator finishes the construction.

The asymptotic analysis of the expression is done in two steps. Firstly, we get rid of the operator Λ by
using the properties

[zn]zF (z) = [zn−1]F (z), [zn]

∫
F (z)dz =

1

n
[zn−1]F (z).

We then obtain

[z2n]z

∫
z

∫ [
U→(z)2n−m−1

(2n−m− 1)!
eV→(z) 8T→(z)4z−4

(1− 2T→(z))3

]
dz2

=
1

(2n− 1)(2n− 3)
[z2n−4]

U→(z)2n−m−1

(2n−m− 1)!
eV→(z) 8T→(z)4z−4

(1− 2T→(z))3

=
1

(2n− 1)(2n− 3)
[z2n]

U→(z)2n−m−1

(2n−m− 1)!
eV→(z) 8T→(z)4

(1− 2T→(z))3
.

The second step is to apply Lemma 3.2.2 taking H(t) such that H(T→(z)) = 8T→(z)4(2n − m)U→(z)−1,
y = 3. Since U→(z) = T→(z) − T→(z)2, the resulting value H(1/2) will be 8/16 · (2n −m) · 4 ∼ 2n when
m/n→ 1. An application of the lemma gives

(2n)!

|D(2n,m)|
1

(2n− 1)(2n− 3)
[z2n]

U→(z)2n−m

(2n−m)!
eV→(z) H(T→(z))

(1− 2T→(z))3

=
2n(1 + µn−1/3)

(2n− 1)(2n− 3)

(
n1/3

|µ|

)3

(1 +O(|µ|−3)) =
1

2|µ|3
+O(|µ|−6).

The weakly connected component containing the pattern x  x  y  y may happen to be a unicycle
(see Figure 7.12), or a complex component of excess at least 1 (see Figure 7.13). The constructions analogous
to Lemma 7.3.1 counting simple digraphs with a distinguished contradictory pattern weighted as 2`, where `
is the length of the pattern, yield asymptotics of order O(|µ|−6) or smaller. This concept can be illustrated
by the unicyclic case.

Instead of the three sequences with the generating function 1
(1−2T→(z))3 we consider 6 sequences (possibly

empty). There are several different mutual configurations of the distinguished contradictory pattern and the
unicycle which contains this pattern, but all can be described by 6 sequences. For one of these sequences the
directions of the edges are not fixed, but its length is not accounted in the weight of the graph. Therefore, the
generating function for such a sequence is also proportional to 1

1−2T→(z) , where a factor 2 in front of T→(z)

stands for the choice of orientation of each edge. The number of trees in such a graph remains (2n −m),
and so, the contribution obtained from Lemma 3.2.2 has order Θ

(
1

(2n−1)(2n−3) ·
n2

|µ|6

)
= Θ(|µ|−6).

Remark 7.3.1. The same type of reasoning is used to show that the terms Eξr with r > 2 and Eξ(ξ −
1) · · · (ξ−k+1) for k > 2 do not contribute to the term of order Θ(|µ|−3) and start contributing from Θ(|µ|−6).
Refinement of this technique using the complete asymptotic expansion of the saddle point lemma (see the
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Figure 7.12: Contradictory path in component of
excess 0.
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Figure 7.13: Contradictory path in component of
excess 1.

refinement of Lemma 3.2.1 in Section 3.3) can be used to obtain the complete asymptotic expansions of the
probability of satisfiability in powers of |µ|−3. The problem of enumeration of the mutual combinations of
tuples of minimal contradictory components inside an implication digraph, in order to compute the factorial
moments of ξ, seems to be a challenging task.

7.3.2 From simple digraphs to sum-representations

The two details peculiar to sum-representations that were not treated in the previous section are the following:
firstly, all the literals of the paths x x, x y, y  y of the distinguished pattern, except x and x, and y and
y, should be pairwise strictly distinct; secondly, there should be no edge conflicts, i.e. pairs of complementary
edges. Note that a presence of an edge x → x automatically induces a conflict, so there should be no such
edges as well.

Excluding these cases requires inclusion-exclusion: in order to count the instances not containing con-
flicts and complementary literal pairs, we count the instances with distinguished conflicts and distinguished
complementary literal pairs, and then take the alternating sum over them. The two inclusions-exclusions
can be done independently.

Lemma 7.3.2 (Excluding complementary literals on the paths). Among the digraphs with a distinguished
pattern x  x  y  y, taken with weight 2 to the power of the length of the pattern, the asymptotic
proportion of digraphs in which there exist two literals on the pattern which are not strictly distinct (except
the pairs x and x, and y and y), is only O(n−1/3|µ|−2).

Proof. Let a random variable X denote the number of pairs of complementary literals on the distinguished
pattern, not counting x and x, and y and y. Using the inclusion-exclusion principle, we can express the
probability of the event [X = 0] as

P(X = 0) = 1− EX +
1

2!
EX(X − 1)− · · · ,

where EX corresponds to the proportion of digraphs having a distinguished pattern and a distinguished
additional pair of complementary literals z and z. Further terms correspond to distinguishing several pairs
of complementary literals, etc.

By marking two complementary literals in the case when a contradictory pattern is a tree (see Lemma 7.3.1
and Figure 7.11), we obtain 5 sequences instead of 3, and we need three applications of the label insertion
operator Λ instead of just two. We then obtain a generating function

F (z) = Λ3

(
U→(z)2n−m−1

(2n−m− 1)!
eV→(z) 25T→(z)6z−6

(1− 2T→(z))5

)
(7.3.2)

105



and after extracting the asymptotics using Lemma 3.2.2, we obtain

EX =

[z2n]Λ3

(
U→(z)2n−m−1

(2n−m− 1)!
eV→(z) 25T→(z)6z−6

(1− 2T→(z))5

)
[z2n]Λ2

(
U→(z)2n−m−1

(2n−m− 1)!
eV→(z)

23T→(z)4z−4

(1− 2T→(z))3

) = Θ(n−1/3|µ|−2)

The same factor n−1/3 multiplied by a polynomial of |µ|−1 and n−1/3 appears when the weakly connected
component containing the contradictory pattern is not necessarily a tree. Further factorial moments of X
will have respective contributions of order n−k/3, k > 2. From [Jan+93] it is known that the components
with infinite excess appear with an asymptotic zero probability, therefore, the interiors of the distinguished
paths have pairwise strictly distinct literals with a probability of 1−O(n−1/3|µ|−2).

As opposed to the first inclusion-exclusion on the number of complementary literals in the distinguished
pattern, it can be shown that the number of complementary edge pairs in the whole graph follows a limiting
Poisson distribution with parameter 1/8, so the absence of conflicting edges comes at a positive probability
e−1/8. In this paper, we focus only on the probability of not having edge conflicts.

Lemma 7.3.3 (Excluding edge conflicts). With an asymptotic probability e−1/8, the digraphs from D(2n,m)
with a distinguished pattern x x y  y weighted according to 2 to the power of its length, are conflict-
free.

Proof. Following the same inclusion-exclusion principle, we introduce a random variable X denoting the
number of conflicting pairs of edges. The probability of the event [X = 0] can be expressed using the
inclusion-exclusion principle.

Let us start by computing EX, i.e. the expected number of the conflicting edges. According to the
linearity of the mathematical expectation, EX equals to the total number of possible complementary edge
pairs times the probability that one distinguished edge pair, say 1→ 2, 2→ 1 is involved in a conflict.

Using Lemma 7.2.3, we construct the EGF for the family of digraphs containing a distinguished conflict
x → y, y → x by inserting two pairs of labels x, x and y, y at the free slots. This insertion can happen in
several different ways: each of the edges can belong to the forest of directed trees, to the set of unicycles,
and to the complex component (or to the component containing the distinguished pattern x x y  y).

vw

Figure 7.14: Digraph tree with a marked edge and two empty slots.

First, consider the case when each of the distinguished edges belongs to a distinct tree in a forest of
directed trees. We denote the random variable corresponding to the number of such occurrences as X1

which we will show to be asymptotically equivalent to X. A tree containing a distinguished edge v → w
can be represented as a pair of trees with removed roots (which will be later filled by certain labels),
see Figure 7.14. The corresponding EGF for digraphs with two distinguished trees containing edges v → w,
w → v, and containing a distinguished pattern x x y  y weighted as 2 to the power of the length of
the pattern, is then equal to

Λ4

[
1

2!

(
T→(z)

z

)4
U→(z)2n−m−3

(2n−m− 3)!
eV→(z) 8T→(z)4z−4

(1− 2T→(z))3

]
, (7.3.3)

where two of the applications of the operator Λ stand for the insertion of the label pairs v and v, and w and
w for the distinguished conflict edge pair, and another two applications for the insertion of complementary
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literals x and x, and y and y in a distinguished pattern. The term 1/2 · T→(z)4z−4 is an EGF of the set of
two trees with a distinguished edge. The cardinality (2n−m) of the forest of trees is then reduced by 3.

The expected value of X1 is then expressed as

EX1 =

[z2n]Λ4

(
1

2!

(
T→(z)

z

)4
U→(z)2n−m−3

(2n−m− 3)!
eV→(z) 8T→(z)4z−4

(1− 2T→(z))3

)

[z2n]Λ2

(
U→(z)2n−m−1

(2n−m− 1)!
eV→(z)

8T→(z)4z−4

(1− 2T→(z))3

) .

This expression can be readily analysed by Lemma 7.2.3. Using the property that the exchange of the operator
[z2n] with Λ is done according to the rule [z2n]ΛF (z) = 1

2n−1 [z2n]z2F (z), we conclude that the unique
multiples in the numerator of EX1, if carefully counted, appear as follows: (i) a multiple asymptotically
equivalent to (2n)−2 from the double application of Λ and its exchange with [z2n]; (ii) a multiple 1/2 because
the two trees with distinguished conflict form a set; (iii) a multiple 2−4 appear from T→(z)4; (iv) a multiple
42 appears from U→(z)2; (v) a multiple n2 from the change in the factorial (2n − m − 1)! of the EGF of
forest; (vi) all the occurrences of z cancel out. Collecting the powers of two, we finally obtain

EX1 ∼ 2−2−1−4+4 =
1

8
.

So far, we have considered only one particular case, but most of the work has been actually already done.
Without caring too much for the exact coefficients in the asymptotics, let us count the expected values

of the following random variables: (i) X2 for conflicting pairs of edges which are located in the same
directed tree; (ii) X3 for conflicting pairs, one located in a tree, another located in a unicycle (or a complex
component); (iii) X4 for conflicting pairs, neither is located in the forest. For EX2, for the first conflicting
edge we need to fix a pair of rooted trees, and assuming without loss of generality (but with a loss of the
exact multiplicative constant) that the second conflicting edge is inside the first tree, we obtain a path
from this edge to the root. Therefore, the EGF for such objects is proportional, up to a constant, to

1
1−2T→(z) (T→(z)/z)4, which corresponds to four trees without roots and a sequence of trees, each term of the
sequence equipped with a weight 2 corresponding to the choice of the orientation of the edge in the sequence.
Plugging it into the EGF of counted graphs yields

EX2 ∼
C2

Θ(|µ|−3)
[z2n]Λ4

(
1

1− 2T→(z)

(
T→(z)

z

)4
U→(z)2n−m−2

(2n−m− 2)!
eV→(z) 8T→(z)4z−4

(1− 2T→(z))3

)
. (7.3.4)

We immediately notice that using fewer than two trees costs an asymptotic multiple of n because of the
factorial in the denominator for the EGF of forest U→(z)2n−m/(2n−m)!, while we gain only a multiple n1/3

for an additional sequence constructor. Thus, EX2 is negligible by a factor n2/3. The same story happens
again for X3 and X4 since in all these cases fewer than two trees are used, and for each lost multiple n it is
possible to obtain at most two sequence constructions, contributing each n1/3.

Again, the same principle is applicable for computing the higher moments: the most probable situation
is to have all the conflicting edges separately in distinct trees (otherwise the contribution will be negligible
by a factor at least n2/3), and in this case,

1

k!
EX(X − 1) · · · (X − k + 1) ∼ 1

8kk!
,

and therefore, as n→∞, P(X = 0)→
∑
k>0

(−1)k

8kk!
= e−1/8.

Corollary 7.3.1 (Formulation of the counting technique). Note that, by simple asymptotic analysis,
|D(2n,m)|
|D◦(2n,m)| → e1/8. Hence, by following Lemma 7.3.2, we obtain that the asymptotic probabilities obtained by
counting the (weighted) patterns in simple digraphs, without excluding conflicting edges and without taking
care of strict distinctness of the paths, are equal to the asymptotic probabilities that sum-representation
digraphs contain such (weighted) patterns.
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Remark 7.3.2. As can be seen from the proof, the same technique can be applied to the situations when
instead of the pattern x  x  y  y a different pattern is distinguished. This can be either used for the
case when the expectations of ξr are counted, or when further factorial moments of ξ are being considered.
In all such cases, the edge conflicts will most probably appear in the forest component, and excluding such
conflicts will always give a multiple e−1/8.

Remark 7.3.3. Using the same techniques and the inclusion-exclusion method, it is possible to consider the
2-SAT model where some of the conditions (C1)–(C3) are violated. Accordingly, in such models the loops or
multiple edges may appear. The number of the counted graphs will then be multiplied by a certain constant
appearing from inclusion-exclusion or from a different symbolic construction, while the total number of
graphs in the denominator will be coincidentally multiplied by the same constant. Therefore, the probability
of satisfiability and its asymptotic expansion will remain unchanged under the different models.

7.3.3 The structure of contradictory components

Let us recall that the contradictory component in the implication digraph, defined as the set of contradictory
variables x x x, forms a set of strongly connected components, see Remark 2.2.1. The following theorem
gives a description of the contradictory component in the subcritical phase.

Theorem 7.3.1. Suppose that m = n(1 + µn−1/3), and µ→ −∞ with n while remaining |µ| 6 n1/12. The
contradictory component of an implication digraph corresponding to a random formula F ∈ F(n,m) has an
excess r with probability

P(excess of the contradictory component = r) = Cr|µ|−3r(1 +O(|µ|−3)). (7.3.5)

Moreover, for every finite r, the kernel of this contradictory component is cubic with probability 1−O(n−1/3).
The coefficient Cr is equal to the sum of

∑
M 2−rκ(M)/(2r)! taken over all possible labelled cubic contra-

dictory components of excess r.

Proof. Let ξr denote the random variable which equals to the number of contradictory components of excess
r (each component is not necessarily connected and the different components may possibly overlap). Using
a manipulation with formal power series that can be interpreted as a variation of the inclusion-exclusion
principle, we can express the probability that ξr equals 1.

Let F (x) :=
∑
k>0 P(ξr = k)xk be the probability generating function (PGF) of ξr. Then, F (k)(z) =

Eξr(ξr − 1) · · · (ξr − k+ 1). Using Taylor series expansion at x = 1, provided that F (x) is analytic in a circle
of radius greater than 1, we obtain

F (x) =
∑
k>0

Eξr(ξr − 1) · · · (ξr − k + 1)

k!
(x− 1)k. (7.3.6)

Using the fact that P(ξr = 1) = F ′(0), we obtain the expression

P(ξr = 1) =
Eξr
0!
− Eξr(ξr − 1)

1!
+

Eξr(ξr − 1)(ξr − 2)

2!
− · · · . (7.3.7)

Here, Eξr can be rewritten as the number of implication digraphs with a distinguished contradictory compo-
nent of excess r, Eξr(ξr−1) is the number of implication digraphs with a distinguished pair of contradictory
components, etc. The distinguished pair of contradictory components forms a contradictory component by
itself, of excess at least (r + 1), as e.g. in Example 7.2.1.

Let us choose a contradictory component C of excess r. We choose a contradictory pattern π which is
chosen by taking an arbitrary sum-representation of the kernel of C, so that no two complementary edges are
chosen. Assume that all the isolated vertices are not included into the pattern, so that there might appear
distinguished vertices that do not have their complementaries in π. Finally, every edge of π is replaced by a
sequence of directed trees to obtain a directed weakly connected component P. By combining the reasoning
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of Section 7.2.3 and using Lemma 2.2.1, we conclude that Eξr is asymptotically worth the number of all
sum-representation digraphs D◦(2n,m) containing P, counted with weight 2`, where ` is the number of edges
of π, and divided by the compensation factor of C. Note that such a weakly connected component P may
be a part of a larger weakly connected component in a sum-representation digraph, so it is required to take
the sum over all possible weakly connected components containing P.

Let us define the following quantities: (i) τ(π) equal to the number of directed edges of π; (ii) ν(π) equal
to the number of pairs of complementary variables in π; (iii) ϕ(π) equal to the number of literals that do
not have their complementaries in π. Then, the number of Boolean variables in C equals ν(π) + ϕ(π), and
the excess r then equals r = τ(π)− ϕ(π)− ν(π). At the same time, the excess of the unoriented projection
of π (in the sense of simple graphs) is equal to τ(π)− ϕ(π)− 2ν(π) = r − ν(π).

The EGF fP(z) for digraphs D ∈ D(2n,m) containing P as a separate weakly connected components,
can be expressed as

fP(z) =
1

κ(π)
Λν
(
U→(z)2m−n+(r−ν(π))

(2m− n+ r − ν(π))!
eV→(z) (T→(z))ϕ(π)+2ν(π)z−2ν(π)2τ(π)

(1− 2T→(z))τ

)
. (7.3.8)

In the case above, each of the literals of π is coloured into a separate distinguished colour, and only the
compensation factor of π is considered.

By analysing the asymptotics of
(2n)!

D(2n,m)
[z2n]fP(z) similarly to Lemma 7.3.1, we obtain

(2n)!

D(2n,m)
[z2n]fP(z) ∼ 1

κ(π)

1

(2n)ν(π)
4ν(π)−rnν(π)−r2−ϕ(π)−2ν(π)2τ(π)nτ(π)/3|µ|−τ(π).

By using the relation r = τ(π)− ϕ(π)− ν(π), we obtain

(2n)!

D(2n,m)
[z2n]fP(z) ∼ nτ(π)/3−r|µ|−τ(π) 1

κ(π)
2−r.

If the kernel of the component C is not a cubic multigraph, then r > τ(π)/3, and the contributions of such
terms are negligible. Otherwise, τ(π) = 3r. In the case when P is a part of a larger weakly connected
component of higher excess, this results of asymptotic of order |µ|−3r−3 which is negligible compared to
|µ|−3r.

Finally, let us obtain the asymptotics of Eξr. By Corollary 7.3.1, enumeration inside simple digraphs
gives the same asymptotics as the probability in sum-representations.

The expected value Eξr can be obtained by adding up the contributions of all possible contradictory
components C of excess r whose kernels are cubic. We denote such a contribution by EξC , where ξC is
the corresponding random variable. Then, recalling the reasoning from Section 7.2.3, and by choosing a
corresponding sum-representation π of the kernel of C, by using Lemma 2.2.1 and the fact that a cubic
multigraph of excess r contains 2r vertices, we express EξC as

EξC ∼
κ(C)

(2r)!κ(π)

∑∞
`=0 2`

∣∣∣{(G, p`) | G∈D
◦(2n,m), p`⊂G is obtained from π by

inserting sequences of trees of total length `

}∣∣∣∣∣{G | G ∈ D◦(2n,m)}
∣∣ . (7.3.9)

Taking the sum over all such C we obtain the dominant contribution of Eξr. Further terms of the inclusion-
exclusion for P(ξr = 1) have order at most |µ|−3r−3 and are, therefore, negligible by a factor |µ|3. Collecting
the dominant contributions, we conclude that

P(ξr = 1) ∼
∑

C of excess r
with cubic

kernels

EξC ∼
∑
C

κ(C)
2r(2r)!

|µ|−3r. (7.3.10)
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We present a different proof of a theorem from [Kim08] using the compensation factors of the contradictory
components which comes as a corollary of the above theorem.

Corollary 7.3.2. For a random formula F ∈ F(n,m), when m = n(1 +µn−1/3) and µ→ −∞ with n while
remaining |µ| 6 n1/12,

P(F is satisfiable) =

(
1− 1

16|µ|3

)
(1 +O(µn−1/3 + µ−3)). (7.3.11)

Proof. In the subcritical phase, the compensation factor of the only possible cubic contradictory implication
multidigraph of excess 1 (viz. Figure 7.6) is equal to 1/4. Therefore, the probability of having a contradictory
component of excess 1 is 2−2

2! ·
1
4 |µ|

−3 = 1
16 |µ|

−3. The probability of having a contradictory component of
higher excess is then Θ(|µ|−6), and so, is negligible.

7.3.4 Number of contradictory variables
Theorem 7.3.2. Let m = n(1 + µn−1/3), µ → −∞, |µ| 6 n1/12. Assuming that the excess of the
contradictory component is r, and this component has a cubic kernel, the number of contradictory variables
Vn in a random formula F ∈ F(n,m) follows asymptotically a Gamma law with shape parameter 3r and
scale parameter n1/3|µ|−1, so that

lim
n→∞

P
(
Vn = xn1/3|µ|−1

∣∣∣ excess = r
)

=
x3r−1

Γ(3r)
e−x. (7.3.12)

Proof. Fix a contradictory component C of excess r with a cubic kernel. Construct a contradictory pattern
π by taking an arbitrary sum-representation of the kernel of C, and replace every oriented edge of π by
a sequence of directed trees, thus obtaining a digraph P. Consider an EGF FP(z, u) for directed graphs
with a distinguished weakly connected component P counted with weight 2` where ` denotes the length of
the 2-core of P. The variable u then marks all the contradictory variables on C. Then, using the similar
constructions as in Theorem 7.3.1, we express FP(z, u):

FP(z, u) =
1

κ(π)
Λ2r

(
U→(z)2m−n−r

(2m− n− r)!
eV→(z) (T→(z))4rz−4r23r

(1− 2uT→(z))3r

)
. (7.3.13)

The expected value of the number of contradictory variables conditioned on this pattern P is then

E[Vn | P] =
∂u[z2n]FP(z, u)|u=1

[z2n]FP(z, 1)
∼ 3r · n1/3|µ|−1, (7.3.14)

and more generally, k-th factorial moment can be expressed as

E[Vn · · · (Vn − k + 1) | P] =
∂ku[z2n]FP(z, u)|u=1

[z2n]FP(z, 1)
∼ Γ(3r + k)

Γ(3r)!
(n1/3|µ|−1)k. (7.3.15)

Note that the resulting factorial moments do not depend on the choice of C, therefore, these are also the
asymptotic moments of the unconditioned variable Vn.

The sequence of moments of the scaled random variable V̂n := Vnn
−1/3|µ| coincides with the sequence of

moments of the Gamma distribution with shape parameter 3r: if its density is f(x) = x3re−x/Γ(3r), then
k-th moment is calculated as ∫ ∞

0

x3r+k−1

Γ(3r)
e−xdx =

Γ(3r + k)

Γ(3r)!
. (7.3.16)

By checking Carleman’s condition for Stieltjes moment problem on (0,+∞), we conclude that this distribu-
tion is uniquely defined by its moments, which finishes the proof.
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Corollary 7.3.3. Since in the subcritical phase a random 2-CNF has a contradictory component of excess
1 with probability 1

16|µ|3 , and components of higher excess with a negligible probability, the distribution of
the number of contradictory variables can be approximated by a mixture of a deterministic value 0 with
probability P(V = 0) = 1 − 1

16|µ|3 and of Gamma distribution with parameter 3 and scale n1/3|µ|−1 with
probability 1

16|µ|3 .

7.3.5 Structure of the spine
In the paper [Bol+01] it is proven that the expected size of the spine in the subcritical phase, i.e. for
m = n(1 + µn−1/3) when µ → −∞ with n, is asymptotically 1

2 |µ|
−2n2/3. As proven in Lemma 7.2.1, for

every literal y from the spine of a formula F ∈ F(n,m) there exists a minimal spinal path of the form
y  x x, such that all the internal nodes of the paths y  x and x x are pairwise strictly distinct. We
show that for almost all literals y from the spine such a minimal spinal path is unique.

Theorem 7.3.3. Consider random formulae F ∈ F(n,m) in the subcritical phase, m = n(1 + µn−1/3),
µ → −∞, |µ| 6 n1/12. The expected number of spine variables y that have exactly k unique paths from y
to y is asymptotically equal to Ckn2/3|µ|−2−3k, where Ck is some algorithmically computable constant. In
particular, the expected proportion of spine variables y having a unique path y  y is 1−O(|µ|−3).

x x

z z

y y

Figure 7.15: One possible configuration of two distinct paths y  y.

Proof. Let a random variable Pn denote the number of spine literals y of a random formula F ∈ F(n,m),
each variable counted with a multiplicity of the number of paths y  y. We also define P (2)

n which counts the
number of spine literals y counted with the multiplicities of the pairs of distinct paths y  y, and similarly
P

(`)
n for `-tuples of distinct paths.
The cardinality of the spine S(F ), i.e. the number of literals y for which there exists at least one such

path, can be then counted using the variant of the inclusion-exclusion approach:

ES(F ) = EPn − EP (2)
n +

1

2!
EP (3)

n − 1

3!
EP (4)

n + · · · . (7.3.17)

In order to prove the theorem, we show that EPn = Θ(n2/3µ−2), EP (2)
n = Θ(n2/3µ−5), and, generically,

EP (k)
n = Θ(n2/3µ−3k+1).
The expected value of minimal spinal paths can be again counted using sum-representations. By distin-

guishing a pattern y  x x and counting such graphs with weight 2` where ` is the length of the pattern,
we are counting the minimal spinal paths with multiplicity 2, as there are 2 distinct paths x x.

Knowing that exclusion of the conflicting edges gives the same result as counting the proportions of
graphs with a distinguished pattern in simple digraphs (see Section 7.3.2), we pass directly to the counting
in simple digraphs. The corresponding EGF for simple digraphs D ∈ D(2n,m) with distinguished pattern
which forms a weakly connected component which is a tree, is then (taking into account the compensating
factor 1/2 arising from the multiplicity mentioned above)

1

2
Λ

(
U→(z)2n−m−1

(2n−m− 1)!
eV→(z)4T→(z)3z−2(1− 2T→(z))2

)
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and therefore, by applying Lemma 3.2.2, we obtain the expected value of the dominant term

EPn ∼
1

2
· 1

2n
· 4 · n · 4 · 1

8
n2/3µ−2 =

1

2
n2/3µ−2.

The above expectation also includes the cases when the excess of the weakly connected component containing
the pattern y  x x is greater than −1, but such cases give contribution at most O(n2/3µ−5) and therefore
are negligible.

Similarly, by constructing all possible cases of having two distinct paths between y and y in the implication
digraph, we note that the dominant contributions come only from the case when vertices of degree 3 are
inserted into the core of the pattern, and therefore the pattern is almost cubic (except for the nodes y, x
and x, and the pairs of complementary literals, where each such pair has a summary degree 3). It is easy
to show that such components contribute a factor O(n2/3µ−5) (one example of such configuration is given
in Figure 7.15). Considering spine literals of further complexity gives the next orders of asymptotics. This
observation finishes the proof.

Corollary 7.3.4. By removing on average a Θ(|µ|−3) proportion of the spine literals, the spine breaks down
into non-intersecting tree-like components, viz. Figure 7.4. For each component there exists a distinct literal
x such that every literal y from this component has a unique path to x, and the path x  x is unique and
strictly distinct.

7.4 Conclusions and open problems

While the analysis of random graphs and the curve of their phase transition have been described in details
in [Jan+93], there is a certain obstacle which doesn’t immediately allow to go inside the critical phase of
2-SAT phase transition using the inclusion-exclusion approach. In [Col+18], a notion of a patchwork has
been specifically designed for a very similar reason. However, their approach also doesn’t suggest any explicit
way for obtaining such patchworks. These considerations give rise to the following questions.

Problem 7.4.1. What is the number of cubic strongly connected contradictory multigraph components
with given excess? How many minimal contradictory (cubic) multigraphs implication multigraphs are there?

A variation of the above question, directly related to the inclusion-exclusion method, leads to the following
question.

Problem 7.4.2. Using a version of [Jan+93, Lemma 3] when |µ| = Θ(1), is it possible to express the
probability of satisfiability as a converging sum of Airy functions A(y, µ)?

Some of the simulations suggested that the introduced notion of the excess correctly captures the discrete
nature of the phase transition. According to the results, the distribution of the excess is discrete for finite µ
and doesn’t depend on n in the limit.

Conjecture 7.4.1. Let ξ denote the total excess of the strongly connected contradictory component in a
random implication digraph corresponding to a formula F chosen uniformly at random from F(n,m). If µ is
constant and m = n(1+µn−1/3), the distribution of ξ is discrete. Moreover, when µ is constant, the number
of strongly connected components of the contradictory component digraph follows a discrete limiting law;
when µ→ +∞, the contradictory component is strongly connected with high probability.

When µ → +∞, the expected value of the excess of the complex component in simple graphs is known
and is 2

3µ
3. Some simulations suggest that exactly the same asymptotics may hold when µ → ∞ for the

expected excess of the contradictory component.

Problem 7.4.3. When m = n(1 + µn−1/3) and µ→ +∞, what is the expected excess of the contradictory
component of a random 2-CNF formula?
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One of the motivations to study the phase transition in 2-SAT is its similarity to the phase transition of
the appearance of the strongly connected component in directed graphs. The papers [ LS09; PP17] seem to
come the closest to resolving the question, but is it possible to give the exact description?

Problem 7.4.4. It is possible to describe a “giant strong component” of a critical directed graph having n
vertices and m = n(1 + µn−1/3) oriented edges in the terms of cubic components and their excesses? Is it
then possible to express the probability of having a strong component of excess r in terms of Airy function
depending on r?

One of the applications of analysis with the help of generating functions, is the study of 2-SAT with a
given set of degree constraints, similarly to [dPR16] and [DR18]. It is clear that the same analysis can be
done for the case of formulae with literal set degree constraints, however the present analysis is done only
for the subcritical phase.

Conjecture 7.4.2. The point r of the phase transition in the 2-SAT model with literal degree constraints
from a set ∆ = {d1, d2, . . .} (possibly weighted) can be computed from the system of equations

z
ω′′(z)

ω′(z)
= 1, z

ω′(z)

ω(z)
= r, (7.4.1)

where ω(z) :=
∑
d∈∆

zd

d!
and ∆ satisfies the condition 1 ∈ ∆.
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Chapter 8

Statistics of closed lambda terms

Contents
8.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.1.1 Lambda calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.1.2 Analytic tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2 Statistics of plain lambda terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.2.1 Variables in plain lambda terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.2.2 Redexes in plain lambda terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2.3 Joint distribution of variables, abstractions, successors and redexes . . . . . . . . . 122
8.2.4 Head abstractions in plain lambda terms . . . . . . . . . . . . . . . . . . . . . . . . 123
8.2.5 De Bruijn index values in plain lambda terms . . . . . . . . . . . . . . . . . . . . . 124
8.2.6 Leftmost-outermost redex search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2.7 Height profile in plain lambda terms . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3 Parameters in closed lambda terms . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.3.1 m-openness and the enumeration of closed terms . . . . . . . . . . . . . . . . . . . 131
8.3.2 Variables, abstractions, successors and redexes in closed terms . . . . . . . . . . . 132
8.3.3 Free variables in plain terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.3.4 Head abstractions in closed terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.3.5 De Bruijn index values in closed lambda terms . . . . . . . . . . . . . . . . . . . . 135
8.3.6 Leftmost-outermost redex search time in closed terms . . . . . . . . . . . . . . . . 135
8.3.7 Node height profile in closed terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.1 Preliminaries

8.1.1 Lambda calculus
λ-calculus is a theoretical formalism famously equivalent in expressiveness to Turing machines, see [Bar84]. In
this calculus, computations are represented as λ-terms defined by the formal grammar T ::= x | (λx.T ) | (T T )
in which x belongs to the countable, infinite alphabet of variables; (λx.T ) is an abstraction of variable x in
T ; and (T T ) denotes an application of two λ-terms. Given an abstraction (λx.T ), occurrences of x in T are
said to be bound . Unbound variable occurrences are said to occur freely .

Lambda terms, intended to represent anonymous functions, are executed by means of the iterated process
of β-reduction. First, an arbitrary β-redex subterm in form of (λx.N)M is selected (if no such subterm exists,
computations are terminated). Next, the selected β-redex is replaced with N [x := M ], i.e. N in which each
occurrence of x is substituted, in a capture-avoiding manner, by M . While substituting M for x in N we
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have to avoid the unintended situation in which free variable occurrences in M get bound, in other words
captured, by some abstractions occurring in N . For instance, let N = (λy.x) andM = y. The term (λx.N)M
should not be reduced to λy.y as, by doing so, the free variable occurrence y gets bound due to a coincidental
clash with the inner abstraction variable name. Certainly, the arbitrary choice of the formal variable name
y should not influence the intended semantics of the represented computation. Following this motivation,
λ-terms differing only in bound variable names are considered equivalent (in other words α-convertible). In
order to avoid potential name clashes, we can therefore rename bound variable occurrences before proceeding
with β-reduction. Since there is an infinite supply of available variable names, it is always possible to avoid
variable captures. Consequently, we can equivalently α-convert (λx.λy.x)y into, say, (λx.λw.x)y and proceed
with (λx.λw.x)y →β (λw.x)[x := y] = λw.y.

Though intuitive, explicit variable names pose considerable conceptual and implementation problems. For
instance, consider the terms λx.x and λy.y. Although syntactically different, both semantically represent
the same anonymous identity function as (λx.x)T →β T and (λy.y)T →β T for arbitrary T . In order to
facilitate automatic computations, de Bruijn proposed a different notation for λ-terms eliminating in effect
the troublesome variable names [dBru72]. In his notation, variable occurrences are replaced with indices
represented as non-negative integers. The intention is to view λ-terms as natural tree-like structures and
encode variable occurrences as indices denoting their relative distance to respective variable binders – each
index n denotes a variable occurrence x whose relative distance to its binder (in terms of passed lambda
symbols) is equal to n + 1. For instance, 0 corresponds to a variable occurrence bound to the nearest
abstraction on its unique path to the root in the associated tree-like representation of the considered λ-term.
Consequently, α-convertible λ-terms have the same de Bruijn representation. In effect, each λ-term in the
de Bruijn notation represents an entire α-equivalence class of λ-terms in the classic variable notation. For
instance, both λx.x and λy.y, being α-convertible, are represented as λ0 in the de Bruijn notation. The use
of de Bruijn indices significantly simplifies the automatic substitution operation. Due to the lack of explicit
variable names, variable captures and name clashes do not pose implementation issues.

Remark 8.1.1. There exists a disagreement in the literature whether to start de Bruijn indices with 0 or 1.
Although de Bruijn himself assumed the latter [dBru72], some authors follow his footsteps, see e.g [GL13;
GL15] whereas others do not, including 0 in the set of admissible indices, see e.g. [GG16; Ben+17; BT17].
Certainly, neither convention is better than the other. In the current work, we follow the convention of
starting de Bruijn indices with 0 so the keep consistent with the most recent literature.

Definition 8.1.1. Let {0, 1, . . .} be an infinite, denumerable set of available indices. Then, the set L∞ of
λ-terms in the de Bruijn notation is defined inductively as follows:

1. Each index n is a λ-term;

2. If N and M are λ-terms, then (NM) is a λ-term;

3. If N is a λ-term, then (λN) is a λ-term.

Following usual notational conventions, we omit outermost parentheses and drop parentheses from left-
associated λ-terms. For instance, λx.λy.λz.((xy)z) in the classical variable notation is written as λλλ210.

An index occurrence n is said to be bound in the term N if there exist at least n + 1 lambda symbols
on the unique path from n to the root of the associated tree-like representation of N , see e.g. Figure 8.1.
Otherwise, n is said to be occurring freely in N and hence corresponds to a free variable in the classical
λ-calculus notation. For convenience, we refer to de Bruijn indices both as indices and variables. If each
index occurrence in N is bound, then N is said to be closed . Otherwise, it is said to be open. And so,
λλλ210 is closed whereas λλ21 is not as here 2 is not bound. If prepending N with m lambdas turns it
into a closed λ-term, then N is said to be m-open. Certainly, if N is m-open, then it is also (m + 1)-open.
Moreover, 0-open λ-terms correspond exactly to closed λ-terms. Hence, though λλ21 is not closed, it is
1-open as λλλ21 is a closed λ-term. Finally, we write that a λ-term is plain if we mean to denote that it is
either open or closed, without specifying which case holds.
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Figure 8.1: Tree-like representations associated with the same example λ-term λx.λy.λz.xz(yz) and its
de Bruijn notation variant λλλ20(10). Back pointers to abstractions are included for illustrative purposes
only.

Enumeration

In the current work we follow [Ben+16; Ben+17; GG16; BGG17] and investigate the statistical properties
of random λ-terms in the de Bruijn representation. We assume a unary base encoding of indices, i.e. an
encoding in which n is identified with an n-fold application of the successor operator S to zero. Formally,
the set L∞ of λ-terms is described by the following formal grammar:

L∞ ::= n | (λL∞) | (L∞L∞)

n ::= 0 | S n.
(8.1.1)

In order to enumerate λ-terms, we have to assign a formal notion of size to each term in such a manner that
for each available size n the number of terms of size n is finite. Though various size measures are considered
in the literature, most notably the general size model framework of Gittenberger and Go lębiewski [GG16],
we assume the simple natural size notion [Ben+16] in which the size of T is equal to the total number of
abstractions, applications, successors and zeros occurring in T . Formally, we define the size of T inductively
as follows:

|0| = 1

|S n| = |n|+ 1

|M N | = |M |+ |N |+ 1

|λM | = |M |+ 1.
(8.1.2)

Example 8.1.1. Note that, in general, n is of size n + 1 as it consists of n successors applied to zero.
Consequently, the term λλλ210 is of size 11 as it consists of three λ symbols, two applications between 2, 1
and 0, by convention omitted in writing, and indices 0, 1, 2 of total size six.

Remark 8.1.2. It is worth noticing that, with some minor technical overhead, the analysis presented in the
current work extends onto the more general size model framework of Gittenberger and Go lębiewski [GG16]
including the assumed natural size notion as a special case. We prefer to avoid technicalities related to the
general size notion and so, for the reader’s convenience, favour a lucid presentation of the key arguments.

Let Lm denote the set of m-open λ-terms, see Definition 8.1.1 (plain terms can be viewed as “infinitely”
open, hence the∞ symbol in the subscript of L∞). Like plain λ-terms (8.1.1), Lm can be described in terms
of a formal, though now infinite, grammar as follows:

Lm ::= (λLm+1) | (LmLm) | 0, 1, . . . ,m - 1
Lm+1 ::= (λLm+2) | (Lm+1Lm+1) | 0, 1, . . . ,m
. . . . . .

(8.1.3)
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An m-open λ-term T can take one of the three forms. Either T is in the form of abstraction followed by
an (m + 1)-open λ-term; or it is an application of two m-open λ-terms; or, finally, T is one of the indices
0, 1, . . . ,m-1.

Due to the infinite combinatorial specification (8.1.3) for Lm standard analytic combinatorics tech-
niques are not readily applicable. Consequently, enumerating closed λ-terms poses a considerable challenge.
In [GG16] a partial solution bounding the asymptotic growth rate of the number of m-open λ-terms of size
n was proposed. Although both the lower and upper bounds were of the form Cρnn−3/2, a typical trait of
various tree-like structures, the asymptotic growth rate of m-open terms remained open. Remarkably, some
time later in their joint paper [BGG17] Bodini, Gittenberger and Go lębiewski closed the remaining gap and
confirmed the conjectured Cρnn−3/2 form of the asymptotic growth of m-open λ-terms. Furthermore, two
combinatorial problems related to random closed λ-terms were studied. Specifically, the number of terms
with an a priori fixed number of abstractions and the number of terms in β-normal form, i.e. without β-
redexes. In this context, our contribution is a natural continuation of their work. In addition, we offer a
different proof of the asymptotic growth rate of m-open λ-terms.

8.1.2 Analytic tools

We use the standard tools from analytic combinatorics discussed in Part I and also novel machinery for infinite
systems of algebraic equations Chapter 4. For our purposes, combinatorial parameter analysis outlines as
follows:

• Let an,k denote the number of plain (closed) lambda terms of size n for which the investigated parameter
takes value k. Note that we do not assume that the numbers an,k are a priori known. With such a
two-dimensional sequence of numbers we associate a bivariate generating function

A(z, u) :=
∑
n,k>0

an,kz
nuk; (8.1.4)

In order to simultaneously study several different parameters of interest, we introduce multivariate
generating functions in form of

A(z,u) =
∑
n,k>0

an,kz
nuk (8.1.5)

where u = (u1, . . . , ud) is a d-dimensional variable, k = (k1, . . . , kd) is a d-dimensional index satisfying
ki > 0, uk := uk11 u

k2
2 · · ·u

kd
d , and an,k denotes the number of plain (closed) lambda terms of size n for

which the investigated parameter values equal k1, k2, . . . , kd, respectively;

• Considered combinatorial parameters (patterns) inside plain or closed λ-terms are described in terms
of admissible combinatorial specifications (sometimes infinite, as in the case of closed terms);

• So obtained specifications are then converted into systems of equations involving multivariate generat-
ing functions where additional variables u = (u1, u2, . . . , ud) mark associated combinatorial patterns;

• In the case of plain lambda terms, the resulting systems of equations are solved, usually approximately,
in terms of standard complex-valued functions like f(z) =

√
1− z. The coefficients of associated

generating functions depend on the marking variables u = (u1, u2, . . . , ud). In the case of closed
lambda terms, novel tools developed in Chapter 4 are applied;

• Finally, an application of Flajolet and Odlyzko’s transfer theorem provides access to probability gen-
erating functions of the limiting probability distributions. In consequence, properties of investigated
combinatorial parameters become readily available.
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8.2 Statistics of plain lambda terms
In this section we investigate several basic combinatorial parameters related to random plain λ-terms. Let
us start with invoking the combinatorial specification (8.1.1) describing the set L∞ of plain λ-terms. Recall
that L∞ is specified as

L∞ ::= n | λL∞ | (L∞L∞)

n ::= 0 | S n.
(8.2.1)

Equivalently, the set L∞ of λ-terms can be specified using a pictorial tree grammar, see Figure 8.2 (note the
explicit @ symbol for term application).

L∞ =

λ

L∞

+

@

L∞ L∞

+ D

D = 0 +

S

D

Figure 8.2: Combinatorial specification for plain λ-terms.

Following symbolic methods [FS09, Part A: Symbolic Methods] we note that the generating function
D(z) corresponding to de Bruijn indices takes the form D(z) =

z

1− z
and so the generating function L∞(z)

associated with plain λ-terms satisfies the following functional equation:

L∞(z) = zL∞(z) + zL∞(z)
2

+
z

1− z
. (8.2.2)

Solving (8.2.2) for L∞(z) we obtain two formal solutions. Since we know a priori that the resulting generating
function has non-negative coefficients [zn]L∞(z) we conclude that

L∞(z) =
1

2z

(
1− z −

√
(1− z)2 − 4z2

1− z

)
. (8.2.3)

In this form, we can easily verify that the radicand expression (1− z)2− 4z2

1− z
carries the single dominant

square-root type singularity ρ of L∞(z). At this point, a straightforward application of the transfer theorem
(see Proposition 3.1.1) gives us access to the asymptotic growth rate of the counting sequence corresponding
to plain λ-terms.

Proposition 8.2.1 (see [Ben+16]). Let L∞(z) be the generating function associated with plain λ-terms (8.2.3).
Then, the number [zn]L∞(z) of plain terms of size n admits the following asymptotic approximation:

[zn]L∞(z) −−−−→
n→∞

Cρ−nn−3/2 (8.2.4)

where
ρ
.
= 0.29559774 and C

.
= 0.606767. (8.2.5)

More specifically, ρ is the positive real root of the polynomial z3 +z2 +3z−1 = 0 whereas C = 1
2(1−ρ)

√
ρ+2
π .

119



8.2.1 Variables in plain lambda terms
We start our investigations with the variable distribution in plain λ-terms.

Proposition 8.2.2. Let Xn be a random variable corresponding to the number of variables in a random
plain λ-term of size n. Then, after standardisation, Xn converges in law to a Gaussian distribution. Its
expectation µn and variance σ2

n satisfy (up to numerical approximation)

µn −−−−→
n→∞

0.306849n and σ2
n −−−−→

n→∞
0.0516364n. (8.2.6)

L∞ =

λ

L∞

+

@

L∞ L∞

+ D

Figure 8.3: Marking variables in plain terms.

Proof. Let us consider a bivariate generating function L∞(z, u) in which [znuk]L∞(z, u), i.e. the coefficient
standing by znuk, denotes the number of plain λ-terms of size n with k variables (equivalently k occurrences
of 0). Marking all occurrences of 0 in the defining equation (8.2.2) of L∞(z), see Figure 8.3, we obtain the
following combinatorial specification for L∞(z, u):

L∞(z, u) = zL∞(z, u) + zL∞(z, u)
2

+
uz

1− z
(8.2.7)

and hence

L∞(z, u) =
1

2z

(
1− z −

√
(1− z)2 − 4uz2

1− z

)
(8.2.8)

as L∞(z, 1) = L∞(z).
The dominant singularity ρ(u) of L∞(z, u), is the real positive root of the radicand expression F (z, u) =

(1− z)2 − 4uz2

1− z
. Moreover, the singularity has a non-zero derivative at u = 1. According to Remark 4.1.4

(moving singularity framework) this yields a Gaussian limit law.
The mean and the variance of the resulting normal distribution can be computed by Proposition 4.1.4

using the values ρ′(1) and ρ′′(1) from the partial derivatives of F (z, u). Since F (ρ(u), u) = 0, after taking
the derivative with respect to u we obtain

ρ′(1) = −∂uF (ρ, 1)

∂zF (ρ, 1)
and ρ′′(1) = −∂

2
uF (ρ, u) + 2ρ′(1)∂z∂uF (ρ, 1) + ρ′(1)

2
∂2
zF (ρ, 1)

∂zF (ρ, 1)
. (8.2.9)

Remark 8.2.1. Let us note that, in general, ρ(u) is a root of the polynomial (1− zb)F (z, u) whose degree
depends on the specific size model parameters a, b, c, d denoting the weights of zero, successor, abstraction
and application, respectively, cf. [GG16]. Specifically,

(1− zb)F (z, u) = (1− zb) (1− zc)2 − 4uza+d. (8.2.10)

Consequently, for most admissible size notion parameters we cannot explicitly obtain analytic expression of
ρ(u). Instead, in order to check the premises of the multivariate central limit theorem we have to work with
the implicit equation (8.2.10).

The main technical obstacle lies in the verification of the requested variability condition B′′(1) +B′(1)−
B′(1)

2 6= 0, see (4.1.13). The remaining argumentation is virtually identical to the one presented for the
specific case of a = b = c = d = 1.
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8.2.2 Redexes in plain lambda terms

Basic marking techniques allow us also to investigate limiting distributions of various sub-patterns in plain
λ-terms. In what follows we study the fundamental pattern of β-redexes. Recall that a β-redex is a λ-term in
form of (λN)M where N and M arbitrary λ-terms. In other words, a sub-pattern which can be depicted as

@

λ

·
· .

Proposition 8.2.3. Let Xn be a random variable denoting the number of β-redexes in a random plain
λ-terms of size n. Then, after standardisation, Xn converges in law to a Gaussian distribution with expec-
tation µn and variance σ2

n satisfying (up to numerical approximation)

µn −−−−→
n→∞

0.0907039n and σ2
n −−−−→

n→∞
0.0519495n. (8.2.11)

Proof. We start with establishing a formal specification for β-redexes in plain λ-terms. For that purpose,
we introduce an auxiliary class N consisting of de Bruijn indices and terms in application form.

Note that if N is in application form, then either N = (λM)P , i.e. N is a β-redex, or N = MP where
M belongs itself to class N . Furthermore, with N at hand, we notice that each plain λ-term N takes either
the form N = λM for some λ-term M , or is an element of N . We can therefore write down the following
joint combinatorial specification (8.2.12) for L∞(z, u) and N(z, u) corresponding to L∞ and N , respectively,
using the variable u to mark the redex occurrences in N , see Figure 8.4:

L∞(z, u) = zL∞(z, u) +N(z, u)

N(z, u) =
z

1− z
+ uz2L∞(z, u)

2
+ zN(z, u)L∞(z, u).

(8.2.12)

L∞ =

λ

L∞

+ N

N = D +

@

λ

L∞
L∞

+

@

N L∞

Figure 8.4: Marking redexes in plain terms.

Given that L∞(z, 1) = L∞(z) we solve (8.2.12) for L∞(z) we finally obtain

L∞(z, u) =
1− z −

√
(1− z)2 − 4z2(1+z(u−1))

1−z

2z (1 + z(u− 1))
(8.2.13)

With the closed-form formula (8.2.13) we can now easily access the dominant singularity ρ(u) of L∞(z, u)

carried by the radicand expression (1 − z)2 − 4z2(1+z(u−1))
1−z . Consequently, a straightforward application of

the multivariate central limit theorem finishes the proof, see Proposition 4.1.4.
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8.2.3 Joint distribution of variables, abstractions, successors and redexes
Proposition 8.2.4. Let Xn = (Xn(var), Xn(red), Xn(suc), Xn(abs)) be a random vector denoting

1. the number Xn(var) of variables;

2. the number Xn(red) of β-redexes;

3. the number Xn(suc) of successors, and

4. the number Xn(abs) of abstractions

in a random plane λ-terms of size n. Then, after standardisation, the random vector Xn converges in law
to a multivariate Gaussian distribution satisfying (up to numerical approximation)

Xn
d−→ N

n


0.307

0.091

0.129

0.258

 , n


0.052 −0.013 −0.034 −0.069

−0.013 0.052 −0.022 0.047

−0.034 −0.022 0.145 −0.076

−0.069 0.047 −0.076 0.214


 . (8.2.14)

Proof. Like in the corresponding proofs for single parameters (see Proposition 8.2.2 and Proposition 8.2.3)
we base our proof on the multivariate central limit theorem (see Proposition 4.1.4). We start with a joint
multivariate specification for plain λ-terms including the investigated combinatorial parameters marked
using auxiliary variable vector u = (u(var), u(red), u(suc), u(abs)) corresponding to respective components of
Xn, see Figure 8.5 (cf. Figure 8.4).

L∞ =

λ

L∞

+ A

A = D +

@

λ

L∞
L∞

+

@

A L∞

Figure 8.5: Marking abstractions, variables, successors and redexes in plain λ-terms.

Let u denote the vector of considered marking variables. Such a specification, when converted into a
system of functional equations involving the generating functions L∞(z,u) and A(z,u) associated with L∞
and A, respectively, yields

L∞(z,u) = u(abs)zL∞(z,u) +A(z,u)

A(z,u) =
u(var)z

1− u(suc)z
+ u(red)u(abs)z

2L∞(z,u)2 + zA(z,u)L∞(z,u).
(8.2.15)

Furthermore, reformulating (8.2.15) we find that

(1− u(abs)z)L∞(z,u) =
(
zu(abs)(u(red) − 1) + 1

)
zL∞(z,u)

2
+

u(var)z

1− u(suc)z
. (8.2.16)
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Let ∆(z,u) be the discriminant of the quadratic equation (8.2.16) defining L∞(z,u).
Note that ∆(z,u) satisfies

∆(z,u) = (1− u(abs)z)
2 − 4

(
zu(abs)(u(red) − 1) + 1

) u(var)z
2

1− u(suc)z
. (8.2.17)

In this form, we can access the dominant singularity ρ(u) of L∞(z,u) solving ∆(z,u) = 0 for z as a
function of u. Since (8.2.17) is a cubic equation in z(u) we have access to the analytic form of its roots.
We can therefore easily check that only one solution z(u) of (8.2.17) coincides at u = 1 with the dominant
singularity ρ corresponding to plain terms (8.2.5). Consequently, the generating function L∞(z,u) admits a
corresponding Puiseux expansion in form of

L∞(z,u) = α(z,u)− β(z,u)

√
1− z

ρ(u)
+O

(∣∣∣∣1− z

ρ(u)

∣∣∣∣) (8.2.18)

where both α(z,u) and β(z,u) are analytic and non-vanishing near (z,u) = (ρ,1).
The required variability condition can be directly verified once the analytic form of ρ(u) is calculated.

At this point, the multivariate central limit theorem is readily applicable yielding the asserted convergence.
A direct computation gives the vector of corresponding means and covariance matrix, see (8.2.14).

Remark 8.2.2. Arguably, the most interesting part of the covariance matrix (8.2.14) is the sign of the
correlations and the absolute values of associated variances. Note that in the natural size notion, the
number of abstractions has greater variance than other constructors. Interestingly, the number of β-redexes
is positively correlated with the number of abstractions. Not surprisingly, all other parameters are negatively
correlated.

8.2.4 Head abstractions in plain lambda terms

In this section we turn to head abstractions in plain λ-terms showing that the corresponding random variable
converges to a discrete geometric distribution.

Proposition 8.2.5. Let Xn be a random variable denoting the number of head abstractions in a random
plain λ-term of size n. Then, Xn converges in law to a geometric distribution Geom(ρ) with parameter ρ.
Specifically,

P(Xn = h) −−−−→
n→∞

P(Geom(ρ) = h) = (1− ρ)ρh. (8.2.19)

Proof. Note that each λ-term starts with a (perhaps empty) sequence of consecutive head abstractions
followed either by a de Bruijn index or an application of two terms (recall that abstractions therein are no
longer considered to be head abstractions). Consequently, the set L∞ of plain λ-terms can be specified using
the auxiliary class H of head abstractions as depicted in Figure 8.6.

The bivariate generating function L∞(z, u) corresponding to plain λ-terms with marked head abstractions
satisfies therefore

L∞(z, u) =
1

1− zu

(
z

1− z
+ zL∞(z, 1)2

)
. (8.2.20)

In such a form we immediately note that the dominant singularity ρ(u) of L∞(z, u) does not depend on u.
In fact, it is constant and equal to ρ (i.e. the dominant singularity of L∞(z), see (8.2.5)) as, by construction,
L∞(z, 1) = L∞(z).

Following the fact that L∞(z) admits a Puiseux expansion near z = ρ we can represent L∞(z, 1)
2 as a

corresponding Puiseux series in form of

L∞(z, 1)
2

= α− β
√

1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣) . (8.2.21)
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L∞ =

H
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+

H

@

L∞|u=1 L∞|u=1

H = ε +

λ

H

Figure 8.6: Marking head abstractions in plain terms.

Given (8.2.20) we further note that

L∞(z, u) = α̃(u)−
(

ρ

1− ρu

)
β

√
1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣) (8.2.22)

for u fixed sufficiently close to 1.
At this point, we apply Proposition 4.1.3 and find that the limit probability generating function p(u)

associated with L∞(z, u) satisfies

p(u) =
1− ρ

1− ρu
(8.2.23)

which indeed corresponds to the asserted limit geometric distribution (8.2.19) of Xn.

Remark 8.2.3. The mean number µn of head abstractions in a random λ-term of size n satisfies

µn −−−−→
n→∞

ρ

1− ρ
. (8.2.24)

The limit mean (8.2.24) is close to 0.4196. Consequently, sufficiently large plain terms have, on average, less
than one head abstraction. Such a result stands in sharp contrast to the canonical representation of David
et al. [Dav+13] where the number of head abstractions in a random (closed) λ-term of size n is at least of
order

√
n/ log n; in particular, it is a moderately growing function of n.

8.2.5 De Bruijn index values in plain lambda terms

In the current subsection we focus on the distribution of de Bruijn index values in random λ-terms.

Proposition 8.2.6. Let Xn be a random variable denoting the de Bruijn index value m of an index m
taken uniformly at random from a random plain λ-term of size n. Then, Xn converges in law to a geometric
distribution Geom(ρ) with parameter ρ. Specifically,

P(Xn = m) −−−−→
n→∞

P(Geom(ρ) = m) = (1− ρ)ρm. (8.2.25)

Proof. Let V (m)
n be a random variable denoting the number of de Bruijn indices m in a plain λ-term of

size n. Marking the index m in the specification for plain terms, see Figure 8.7, we note that the bivariate
generating function L(m)

∞ (z, u) associated with V (m)
n satisfies
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λ

L∞

+

@

L∞ L∞

+ 0 + . . . + m + . . .

Figure 8.7: Marking the index m in plain λ-terms.

L(m)
∞ (z, u) = zL(m)

∞ (z, u) + zL(m)
∞ (z, u)

2
+

z

1− z
+ (u− 1)zm+1. (8.2.26)

Denote ∂
∂uL

(m)
∞ (z, u)|u=1 as D(m)

∞ (z). Then, taking the partial derivative ∂u at u = 1 of both sides
of (8.2.26) we arrive at

D(m)
∞ (z) = zD(m)

∞ (z) + 2zD(m)
∞ (z)L∞(z) + zm+1 (8.2.27)

as L(m)
∞ (z, 1) = L∞(z) for each m > 0, cf. (8.2.26) and (8.2.3). Note that [zn]D(m)(z) corresponds to the

weighted sum over all plain λ-terms of size n where each term comes with weight equal to the total number
of occurrences of index m in it.

Let S∞(z, w) =
∑
m>0D

(m)
∞ (z)wm. Taking the weighted sum over all m > 0 of both sides of (8.2.27)

such that weight corresponding to m is wm we obtain

S∞(z, w) = zS∞(z, w) + 2zS∞(z, w)L∞(z) +
z

1− zw
. (8.2.28)

Consequently, [znwm]S∞(z, w) stands for [zn]D(m)(z) whereas [zn]S∞(z, 1) denotes the weighted sum of all
λ-terms of size n where each term has weight equal to its total number of variables. In other words, variable
w in S∞(z, w) marks the probability mass function corresponding to Xn. Solving (8.2.28) we find that

S∞(z, w) =
1

1− zw

(
z

1− z − 2zL∞(z)

)
=

z

1− zw

√(1− z)2 − 4z2

1− z

−1

(8.2.29)

where the latter equality follows from the formula (8.2.3) for L∞(z).
Furthermore, given the known Puiseux expansion of the right-hand side square-root expression (see,

e.g. Proposition 8.2.1) we easily note that S∞(z, w) admits a Puiseux series expansion required for Proposi-
tion 4.1.3. Finally, a routine computation verifies the asserted geometric limit distribution Geom(p) corre-
sponding to the variable Xn.

Remark 8.2.4. The mean value µn of a random index with a random plain terms satisfies

µn −−−−→
n→∞

ρ

1− ρ
. (8.2.30)

The limit value (8.2.30), coinciding in the natural size notion with the corresponding mean for head abstrac-
tions (8.2.24), is close to 0.4196. This result stands, again, is sharp contrast to the canonical model of David
et al. [Dav+13] in which variables (in closed terms) tend to be arbitrarily far from their binding abstractions.

Let us point out that such a disparity is a consequence of the different combinatorial models for λ-terms.
In the canonical representation, the distance from a variable to its binding abstraction does not contribute to
the weight of the corresponding variable (all variables have weight zero). On the other hand, in the de Bruijn
representation weights of bound indices are proportional to the distances to their binding abstractions.
Consequently, de Bruijn indices in large random λ-terms tend to be, on average, shallow. This central
difference of both combinatorial models leads to remarkably contrasting asymptotic properties, including
normalisation of large random λ-terms, cf. [Dav+13; Ben+16; Ben17].

125



8.2.6 Leftmost-outermost redex search

In order to evaluate an expression represented by a λ-term M we iteratively choose a β-redex (i.e. a subterm
in form of (λP )Q) in M and contract it using β-reduction, see e.g. Figure 8.8 (cf. Section 8.1.1).

@

λ

@

@

0 @

1 0

λ

0

T

β−−−−→

@

@

T

@

1

T

λ

0

Figure 8.8: An example of β-reduction (λ0(10)(λ0))T →β T (1T )(λ0).

The order of evaluation (i.e. the order in which redexes are contracted) has a crucial impact on the
computational effect of repeated β-reduction. Consider λ-terms Ω := (λ00)(λ00) and P := (λλ0)Ω. Note
that Ω can be evaluated ad infinitum as Ω →β Ω. If we choose the Ω redex over the main (λλ0)Ω redex
in P , then P →β P . Otherwise, if we choose the leftmost-outermost redex (λλ0)Ω instead of Ω we note
that P →β λ0 since the topmost abstraction in P has no associated indices. We cannot continue β-reducing
λ0 as it contains no more redexes (such terms are in so-called (β-)normal form) and so we terminate the
evaluation process.

Terms from which it is possible to reach a β-normal form using repeated β-reduction are said to be
normalisable. Since it is possible to emulate computations of arbitrary Turing machines in λ-calculus by
means of normalisable terms, it is undecidable to determine whether a given λ-term is normalisable or not,
see [Bar84]. Remarkably, the following classical result provides a normalising evaluation strategy guaranteed
to find normal forms of normalisable λ-terms.

Theorem 8.2.1 (Standardisation theorem, see e.g [Bar84]). Let N be a normalising λ-term. Then, the
iterated process of applying β-reduction to the leftmost-outermost redex in N leads to the (unique) normal
form of N .

When searching for the leftmost-outermost redex in a given λ-term, we traverse the associated λ-tree in
a depth-first manner favouring left branches of application nodes. Both cases of handling abstractions and
indices are trivial – when visiting an abstraction node, we immediately recurse to its subterm looking for the
leftmost-outermost redex; indices cannot contain β-redexes hence after arriving at an index, we terminate
the traversal.

The most interesting part of the traversal algorithm lies in visiting application nodes. Suppose that we
are currently visiting an application node. If its left branch starts with an abstraction node, we terminate
the traversal as we have just found the leftmost-outermost redex. Otherwise, we have two possibilities based
on whether the left branch is in β-normal form or not. If it is, we move into the left branch and, as we cannot
find a β-redex, return from the recursion moving to the corresponding right branch. Otherwise if the left
branch is not in β-normal form, we handle it recursively, however since it contains a β-redex, we eventually
terminate the search before ever returning to visit the right branch.

Let us note that such a traversal algorithm, henceforth abbreviated to LO, introduces some a priori
non-trivial computational overhead to the execution cost of β-reduction in λ-calculus. If carried out on a
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β-redex, LO takes constant time to run. In contrast, when carried out on a λ-term in β-normal form, LO
traverses nearly the whole λ-term. Such a varying traversal cost poses the natural question of the average-
case performance of LO. In what follows, we show that the execution cost of LO, when viewed as a random
variable ranging over random λ-terms, tends to a discrete limit law with constant expectation. Consequently,
finding the leftmost-outermost redex introduces, on average, only a constant overhead to the cost of carrying
out a single β-reduction.

Proposition 8.2.7. Let Xn be a random variable denoting the number of nodes visited by the LO traversal
algorithm while searching for the leftmost-outermost β-redex in a random plain λ-term of size n. Then,
Xn converges in law to a discrete limiting distribution with computable probability generating function and
constant expectation. The corresponding means µn satisfy (up to numerical approximation)

µn −−−−→
n→∞

6.222262521. (8.2.31)

Proof. We start with providing a combinatorial specification for plain λ-terms marking all nodes that are
visited by the leftmost-outermost redex traversal algorithm LO. For that purpose we introduce the following
three auxiliary classes:

• N for the class of β-normal forms;

• M for the class of so-called neutral terms, and

• A for the class of de Bruijn indices and plain λ-terms starting with an application.

In order to give their combinatorial specification we follow the presentation of [Ben+16] and give a joint
description for the class N of β-normal forms and the associated classM of neutral terms. A β-normal form
is either a plain λ-term starting with an abstraction followed by another β-normal form, or a neutral term.
A neutral term, in turn, is either a de Bruijn index, or an application of a neutral term to a β-normal form,
see Figure 8.9.

N =

λ

N

+ M

M = D +

@

M N

Figure 8.9: Joint specification for β-normal forms N and neutral termsM.

Such a specification provides the following system of functional equations defining the generating functions
N(z) and M(z) corresponding to the class of β-normal forms and neutral terms, respectively:

N(z) = zN(z) +M(z)

M(z) = zM(z)N(z) +
z

1− z
.

(8.2.32)

Solving (8.2.32) we note that M(z) and N(z) satisfy

N(z) =
M(z)

1− z
and M(z) =

1− z −
√

(1 + z)(1− 3z)

2z
. (8.2.33)
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Figure 8.10: Specification for plain λ-terms with marked nodes following the execution of the redex finding
traversal algorithm LO.

With both N(z) and M(z) at hand, we can now proceed and give the announced specification for plain
λ-terms with marked nodes visited during the execution of LO, see Figure 8.10.

Let T be a plain λ-term in the class A. Certainly, if T is a de Bruijn index, we mark only its topmost
atom (i.e. the topmost successor or 0 if T is equal to 0). Otherwise, T starts with an application. If T is
a β-redex, we mark two atoms – the topmost application and the abstraction starting the left branch of T .
Remaining nodes are left unmarked. If T is not a redex however its left branch is a neutral term, we mark
the entire left branch as well as the topmost application. Finally, if the left branch of T is not a neutral
term, we take the difference class A \M of A and (marked) neutral termsM for the left branch. The right
branch remains unmarked.

Such a specification yields the following system of functional equations defining the generating functions
L∞(z, u) and A(z, u) corresponding to classes L∞ and A, respectively:

L∞(z, u) = zuL∞(z, u) +A(z, u)

A(z, u) =
zu

1− z
+ z2u2L∞(z, 1)

2
+ zuM(zu)L∞(z, u)

+ zu (A(z, u)−M(zu))L∞(z, 1).

(8.2.34)

Knowing a priori that L∞(z, 1) corresponds to the generating function for plain λ-terms (8.2.3) we solve
system (8.2.34) and find that L∞(z, u) satisfies

L∞(z, u) =
zuM(zu)L∞(z, 1)− (zuL∞(z, 1))

2 − zu
1−z

zuM(zu)− (1− zuL∞(z, 1)) (1− zu)
. (8.2.35)

What remains to finish the proof is to check that L∞(z, u) meets the premises of Proposition 4.1.3.
Specifically, it admits a single, fixed dominant singularity ρ(u) = ρ and a corresponding Puiseux expansion
in form of

L∞(z, u) = α(u)− β(u)

√
1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣) . (8.2.36)

Denote the denominator expression of (8.2.35) as F (z, u). Note that F (ρ, 1) > 0 and hence in a fixed
neighbourhood of u = 1 the denominator F (z, u) is non-zero. Consequently, L∞(z, u) shares its (fixed)
dominant singularity with L∞(z, 1). The required form of the Puiseux expansion of L∞(z, u) follows as a
consequence of the Puiseux expansions of both L∞(z, 1) and its power L∞(z, 1)

2, see (8.2.21). A direct
computation gives access to the corresponding probability generating function (omitted for brevity) and also
the specific limit mean (8.2.31) of Xn.
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Remark 8.2.5. The generating function M(z) associated with neutral terms, see (8.2.32), also corresponds
to the well-known class of Motzkin numbers enumerating, inter alia, plane unary-binary trees, see e.g. [FS09,
Note I.39, p.68]. We refer the curious reader to [Ben+16] for a size-preserving correspondence between neutral
terms of size n and Motzkin trees with n nodes.

8.2.7 Height profile in plain lambda terms
The goal of this section is to obtain some insight into the mean height profile of plain λ-terms. We distinguish
essentially two different notions of height. The first notion which we call unary height , takes into account
only the number of abstractions above the considered node. The second notion concerns the natural height
of a tree, i.e. the number of predecessors of a node which can be either abstractions or applications. In both
situations, the semi-large powers theorem (see Proposition 3.1.2) can be applied. Consequently, the mean
profile is always related to the Rayleigh distribution.

We are interested in mean profile of different types of nodes. In what follows we consider three types of
mean profiles:

• the mean (unary or natural) profile of leaves;

• the mean (unary or natural) profile of abstractions, and

• the mean (unary or natural) profile of applications.

Proposition 8.2.8. Let Hn be a random variable denoting the unary (respectively natural) height of a
randomly chosen variable (application or abstraction) in a random plain λ-term. Then, with x in any
compact subinterval of (0,+∞), Hn admits a limiting Rayleigh distribution

P(Hn = k) ∼ C√
n
· x

2
e−x

2/4 where x =
k√
n
· C (8.2.37)

with C
.
= 4.30187 for unary height, and C

.
= 1.27162 for the natural height. The average value of mean

height is
√
πn/C whereas the peak value is attained at k∗ =

√
2n/C.

More specifically, the average number of

• variables at unary height k is asymptotically equal to 2.839 ke−C
2k2/4n;

• variables at natural height k is asymptotically equal to 0.248 ke−C
2k2/4n;

• abstractions at unary height k is asymptotically equal to 2.383 ke−C
2k2/4n;

• abstractions at natural height k is asymptotically equal to 0.208 ke−C
2k2/4n;

• applications at unary height k is asymptotically equal to 2.839 ke−C
2k2/4n;

• applications at natural height k is asymptotically equal to 0.248 ke−C
2k2/4n.

Proof. We start with the unary height profile of variables. Consider generating functions Ck(z, u) corre-
sponding to plain λ-terms with u marking the variables at the unary height k. These functions satisfy the
following system of equations:

C0(z, u) =
uz

1− z
+ zL∞(z) + zC0(z, u)2, if k = 0;

Ck(z, u) =
z

1− z
+ zCk−1(z, u) + zCk(z, u)2, if k > 0.

(8.2.38)

Taking partial derivatives of each equation in (8.2.38) with respect to u, we obtain a linear system for
derivatives of generating functions. Setting u = 1 we can solve this linear system and obtain

∂

∂u
Ck(z, u)

∣∣∣∣
u=1

=
1

1− z

(
z

1− 2zL∞(z)

)k+1

. (8.2.39)
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Furthermore, a direct computation provides the following Puiseux series expansions as z → ρ:

z

1− 2zL∞(z)
∼ 1− β

√
1− z

ρ
and L∞(z) ∼ 1− ρ

2ρ
− b∞

√
1− z

ρ
(8.2.40)

where β = 2b∞
.
= 4.301868701457. Consequently, the numbersMn,k of variables at unary level k in a random

plain lambda term of size n satisfy

Mn,k =

[zn]
1

1− z

(
z

1− 2zL∞(z)

)k+1

[zn]L∞(z)
. (8.2.41)

An application of the semi-large powers theorem (see Proposition 3.1.2) and the transfer theorem (see Propo-
sition 3.1.1) to the numerator and denominator, respectively, result in the following asymptotic estimate:

Mn,k ∼
2k

1− ρ
e−β

2k2/4n. (8.2.42)

After normalising by the total sum
∑n
k=0Mn,k we obtain the declared limiting distribution.

Next, we turn to the case of natural height profile of variables. Consider generating functions Ck(z, u)
where now u marks the variables at the natural height k, instead of the unary height. As in the previous
case, we obtain a system of equationsC0(z, u) =

uz

1− z
+ zL∞(z) + zL∞(z)2, if k = 0;

Ck(z, u) =
z

1− z
+ zCk−1(z, u) + zCk−1(z, u)2, if k > 0.

(8.2.43)

Again, taking partial derivatives ∂u at u = 1 we can solve the resulting system and find that

∂

∂u
Ck(z, u)

∣∣∣∣
u=1

=
z

1− z
(z + 2zL∞(z))

k
. (8.2.44)

In this case, a direct computation verifies that the function z + 2zL∞(z) admits a Puiseux series expansion
in form of 1 − γ

√
1− z/ρ + O (|1− z/ρ|) where γ = βρ

.
= 1.27162265120953. Consequently, this estimate

yields a Rayleigh distribution with parameter 1.27162265120953. In particular, the average number Mn,k of
variables at natural height k in a random plain λ-term of size n satisfies

Mn,k ∼
2ρ2

1− ρ
ke−γ

2k2/4n. (8.2.45)

In order to mark remaining nodes, i.e. abstractions and applications, it is sufficient to change the first
equation of the system (8.2.38). Accordingly, only the constant multiple behind the mean tree width at level
k changes. For abstractions, we obtain, respectively,

C0(z, u) =
z

1− z
+ zuL∞(z) + zC0(z, u)2 (8.2.46)

for unary height whereas
C0(z, u) =

z

1− z
+ zuL∞(z) + zL∞(z)2 (8.2.47)

for natural height. This change gives the constants 2L∞(ρ) = (1−ρ)
ρ

.
= 2.383 for unary height, and

2ρ2L∞(ρ) = ρ(1− ρ)
.
= 0.208 for the natural height, respectively.

Similarly, marking applications yields a change in the first equation for the generating function

C0(z, u) =
z

1− z
+ zL∞(z) + zuC0(z, u)2 (8.2.48)
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for unary height, and
C0(z, u) =

z

1− z
+ zL∞(z) + zuL∞(z)2 (8.2.49)

for natural height. We obtain the constants 2L2
∞(ρ) = (1−ρ)2

2ρ2
.
= 2.839 for unary height, and 2ρ2L2

∞(ρ) =
(1−ρ)2

2

.
= 0.248 for natural height, respectively.

The mean value is obtained by using the integral approximation for the ratio of sums kMn,k/
∑n
k=0Mn,k

whereas the peak value is obtained by finding the maximum value of Mn,k as a function of k.

8.3 Parameters in closed lambda terms
In the following section we investigate more parameters related to plain and closed λ-terms. In particular,
we consider:

• Several parameters related to closed λ-terms, resulting in Gaussian limit laws;

• Further parameters whose limiting distributions are discrete, including the leftmost-outermost redex
search time in closed terms, the number of free variables in plain terms, the number of head abstractions
in closed terms, and mean degree profile in closed terms;

• Finally, the mean height profile of closed terms for several different notions of height.

8.3.1 m-openness and the enumeration of closed terms
Recall that a term is said to be m-open (see Section 8.1.1) if by prepending it with m head abstractions
we obtain a closed λ-term as a result. Following this natural, hierarchical notion, the set Lm of m-open
λ-terms can be specified as

Lm ::= λLm+1 | (LmLm) | 0, 1, . . . ,m - 1
Lm+1 ::= λLm+2 | (Lm+1Lm+1) | 0, 1, . . . ,m
. . . . . .

(8.3.1)

Let Lm(z) denote the generating function associated with the set ofm-open λ-terms, i.e. Lm(z) =
∑
n>0 an,mz

n

where an,m stands for the number ofm-open lambda terms of size n. Using (8.3.1) we obtain a corresponding
infinite system for the functions Lm(z):

L0(z) = zL1(z) + zL0(z)
2
,

L1(z) = zL2(z) + zL1(z)
2

+ z,

· · · ,
Lm(z) = zLm+1(z) + zLm(z)

2
+ z

1− zm

1− z
,

· · ·

(8.3.2)

In [BGG17, Lemma 8] the authors prove that for each m > 0 the generating functions for m-open
λ-terms Lm(z) admit Puiseux expansions in form of

Lm(z) ∼ am − bm
√

1− z

ρ
. (8.3.3)

Moreover, by the virtue of their proof, we obtain an suitable approximation procedure for the coefficients
am and bm by truncating the system (8.3.2) and replacing the function Lm(z) with L∞(z). Furthermore,
the estimated coefficients ãm and b̃m tend to their respective limits with an error of order O( 1√

m
). Us-

ing Theorem 4.4.1 it is possible to prove that ãm and b̃m converge to their respective limits exponentially
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fast. Consequently, the approximation procedure proposed in [BGG17] convergences exponentially fast, as
well.

Immediately, this implies that the probability that a random plain λ-terms ism-open, but not (m−1)-open

is
bm − bm−1

b∞
. Certainly, the limiting distribution associated with m-openness is discrete.

Note that the probability distribution function of m-openness is proportional to the coefficient at zn in
the bivariate generating function

L(z, u) =
∑
k>1

uk
(
Lk(z)− Lk−1(z)

)
∼
∑
k>1

uk(ak − ak−1)−
∑
k>1

uk(bk − bk−1)

√
1− z

ρ
. (8.3.4)

The mean value corresponding to m-openness of plain terms can be calculated as

[zn]
∂

∂u
L(z, u)

∣∣∣∣
u=1

[zn]L∞(z)
∼
∑
k>1 k(bk − bk−1)∑
k>1(bk − bk−1)

=

∑
k>0(b∞ − bk)

b∞
=
∑
k>0

(
1− bk

b∞

)
. (8.3.5)

In order to compute this expectation we use the approximation procedure discussed above. Using the (aptly
truncated) recurrence for the coefficients am and bm

am =
1

2ρ

(
1−

√
1− 4ρ2

1− ρm
1− ρ

− 4ρ2am+1

)
, bm =

ρbm+1√
1− 4ρ2 1−ρm

1−ρ − 4ρ2am+1

(8.3.6)

we obtain the numerical approximation for the mean value corresponding to m-openness. Numerical approx-
imation yields an estimate 2.01922912627.

8.3.2 Variables, abstractions, successors and redexes in closed terms

In the following section we investigate the joint distribution of several parameters in closed λ-terms, utilising
the novel Theorem 4.4.1.

Proposition 8.3.1. Let Xn = (Xn(var), Xn(red), Xn(suc), Xn(abs)) denote a vector of random variables de-
noting the number of variables, redexes, successors and abstractions in a random closed λ-term of size n,
respectively. Then, after standardisation, the random vectorXn converges in law to a multivariate Gaussian
distribution with identical parameters as plain terms.

Proof. Let us recall that the system of equations from Proposition 8.2.4 associated with the four parameters
that we consider is, in the general class of plain terms, of the form

L(z,u) = u(abs)zL(z,u) +A(z,u),

A(z,u) =
u(var)z

1− u(suc)z
+ u(red)u(abs)z

2L(z,u)2 + zA(z,u)L(z,u)
(8.3.7)

with u = (u(var), u(red), u(suc), u(abs)) corresponding to respective components of Xn.
In order to compose a similar, infinite system for m-open terms, we index respective generating functions

in accordance with the natural combinatorial interpretation of m-openness; if an abstraction stands before
an occurrence of L(z,u), its respective index should be increased by one. This leads us to the following
system:

Lm(z,u) = u(abs)zLm+1(z,u) +Am(z,u),

Am(z,u) = u(var)
z(1− (u(suc)z)

m)

1− u(suc)z
+ u(red)u(abs)z

2Lm(z,u)Lm+1(z,u) + zAm(z,u)Lm(z,u).
(8.3.8)
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Equivalently, we can represent (8.3.8) as(
Lm(z,u)

Am(z,u)

)
= Km(Lm(z,u), Lm+1(z,u), Am(z,u), z,u), m = 0, 1, 2, . . . (8.3.9)

It is straightforward to check that all the conditions of Theorem 4.4.1 are satisfied. Consequently, the
function L0(z,u) admits a Puiseux expansion in form of

L0(z,u) ∼ a0(u)− b0(u)

√
1− z

ρ(u)
(8.3.10)

with the same ρ(u) as in Proposition 8.2.4. Therefore, the limiting distribution, after standardisation, is
Gaussian with the mean vector and the covariance matrix completely determined by the behaviour of the
singularity ρ(u) near the point u = 1.

8.3.3 Free variables in plain terms
Proposition 8.3.2. Let Xn be a random variable denoting the number of free variables in a random plain
lambda term of size n. Then, Xn converges in law to a computable, discrete limiting distribution.

Proof. Consider the infinite system of functional equations (Lm(z, u))∞m=0 where Lm(z, u) corresponds to the
generating function for plain λ-terms in which each de Bruijn index whose value k exceeds its unary height
at least by m, is marked. For example, L0(z, u) corresponds to plain λ-terms with marked free variables.
Note that

L0(z) = zL1(z) + zL0(z)
2

+ uz + uz2 + · · · ,

L1(z) = zL2(z) + zL1(z)
2

+ z + uz2 + · · · ,
· · · ,

Lm(z) = zLm+1(z) + zLm(z)
2

+ z
1− zm

1− z
+ uz

zm

1− z
,

· · ·

(8.3.11)

Let us apply Theorem 4.4.1 to this system taking L∞(z) as the limiting equation. Certainly, the limiting
equation does not depend on the marking variable u. Therefore, the singular point z∗ also does not depend
on u. An application of Proposition 4.1.3 finishes the proof.

In order to compute the mean value we set L�m(z) :=
∂

∂u
Lm(z, u)

∣∣∣∣
u=1

and represent the respective

derivative as
L�m(z) ∼ cm − dm

√
1− z

ρ
. (8.3.12)

Based on (8.3.11) we note that

L�m(z) =
z

1− 2zL∞(z)

(
L�m+1(z) +

zm

1− z

)
. (8.3.13)

Since z
1−2zL∞(z) ∼ 1−2b

√
1− z/ρ as z → ρ we establish the following recurrence relation for the coefficients

cm and dm:

cm = cm+1 +
ρm

1− ρ
and dm = dm+1 + 2b∞cm+1 + 2b∞

ρm

1− ρ
. (8.3.14)

Once solved, this implies

cm =
ρm

(1− ρ)2
and dm =

2b∞ρ
m

(1− ρ)3
. (8.3.15)

Consequently, the mean value corresponding the number of free variables in a random plain lambda term is
equal to d0

b∞
= 2

(1−ρ)3
.
= 5.7222625231204.
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8.3.4 Head abstractions in closed terms
Proposition 8.3.3. Let Xn be a random variable denoting the number of head abstractions in a closed
λ-term of size n, chosen uniformly at random. Then, Xn converges in law to a computable, discrete limiting
distribution. The corresponding expectation is close to 1.447.

Proof. Let Lm(z, u) be the bivariate generating function associated with m-open lambda where u marks
head abstractions. Then, the system (Lm(z, u))∞m=0 satisfies

L0(z, u) = zuL1(z, u) + zL0(z, 1)
2
,

L1(z, u) = zuL2(z, u) + zL1(z, 1)
2

+ z,

. . .
Lm(z, u) = zuLm+1(z, u) + zLm(z, 1)

2
+ z

1− zm

1− z
,

. . .

(8.3.16)

If a λ-term starts with a head abstraction, then after its removal, the openness of the respective subterm
increases by one. Consequently, we include the expression uzLm+1(z, u) in the equation for Lm(z, u). On
the other hand, if the λ-term does not start with a head abstraction, i.e. starts with an application or is
itself a de Bruijn index, we do not mark remaining abstractions as they are no longer head abstractions.
Hence, we also include expressions zL2

m(z, 1) and z 1−zm
1−z in the equation corresponding to Lm(z, u).

Having established the system (8.3.16) we note that L0(z, u) can be obtained as a limit of the solutions
of truncated systems (see the description of the approximation procedure in Theorem 4.4.1) and this limit
is equal to the sum

L0(z, u) = zL0(z, 1)
2

+ zu
(
zuL2(z, u) + zL1(z, 1)

2
+ z
)

= zL0(z, 1)
2

+ z2uL1(z, 1)
2

+ z2u+ (zu)
2
(
zuL3(z, u) + zL2(z, 1)

2
+ z + z2

)
= . . .

(8.3.17)

and so

L0(z, u) = z
∑
m>0

(uz)
m
Lm(z, 1)

2
+
∑
m>1

um(zm+1 + · · ·+ z2m)

= z
∑
m>0

(uz)
m
Lm(z, 1)

2
+
∑
m>1

(uz)
m
z

1− zm

1− z

= z
∑
m>0

(uz)
m
Lm(z, 1)

2
+

uz2

(1− z)(1− uz)
− uz3

(1− z)(1− uz2)
.

(8.3.18)

Denote the final sum in (8.3.18) as S(z, u). Since for each m the function Lm(z, 1) admits a Puiseux series
expansion Lm(z, 1) ∼ am − bm

√
1− z/ρ, near z = ρ it holds

S(z, u) ∼ c(u) + z
∑
m>0

(uz)
m

(
a2
m − 2ambm

√
1− z

ρ

)
(8.3.19)

where c(u) comes from the last two summands of the previous expression. Since a2
m 6 a

2
∞ and ambm 6 a∞b∞,

S(z, u) is convergent near (z, u) = (ρ, 1) and the function L0(z, u) admits a Puiseux series expansion in form
of

L0(z, u) ∼ a0(u)− b0(u)

√
1− z

ρ
. (8.3.20)

Consequently, p(u) = b0(u)/b0(1) is the limiting probability generating function corresponding to the number
of head abstractions in closed λ-terms. The function b0(u) satisfies

b0(u) = 2ρ
∑
m>0

(uρ)
m
ambm. (8.3.21)
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8.3.5 De Bruijn index values in closed lambda terms

Proposition 8.3.4. Let Xn be a random variable denoting the de Bruijn index value m of a random index
m in a random closed λ-term of size n. Then, Xn converges in law to a geometric distribution Geom(ρ)
with parameter ρ. Specifically,

P(Xn = h) −−−−→
n→∞

P(Geom(ρ) = h) = (1− ρ)ρh. (8.3.22)

Proof. Let Lm,k(z, u) denote the generating function for m-open λ-terms with u marking the number of
occurrences of de Bruijn index k. Note that Lm,k(z) satisfies a functional equation

Lm,k(z, u) = zLm+1,k(z, u) + zLm,k(z, u)
2

+ z
1− zm

1− z
+ (u− 1)zk+11[k<m] (8.3.23)

where 1[·] stands for the Iverson bracket notation.
Taking the partial derivative of (8.3.23) with respect to u and assigning u = 1, we obtain the generating

function corresponding to λ-terms weighted by the number of occurrences of de Bruijn index k. Denote
∂
∂uLm,k(z, u)|u=1 as L�m,k(z). Then, taking into account that Lm,k(z, 1) = Lm(z) we arrive at

L�m,k(z) = zL�m+1,k(z) + 2zLm(z)L�m,k(z) + zk+11[k<m]. (8.3.24)

Consider the generating function

Em(z, w) =
∑
k>0

L�m,k(z)wk. (8.3.25)

Note that [zn]Em(z, w) denotes the probability generating function associated with the distribution of vari-
ables in m-open λ-terms (cf. Proposition 8.2.6). Consequently, summing (8.3.24) over k we obtain

Em(z, w) = zEm+1(z, w) + 2zLm(z)Em(z, w) + z
1− (wz)m

1− wz
. (8.3.26)

These equations generate an infinite system for which Theorem 4.4.1 with a small modification is applicable.
Each of the equations of the infinite system is linear, and the generating functions Lm(z) enter the equations
as coefficients. This yields the desired behaviour of the Puiseux expansions, because the non-linearity of the
components is used only to provide the Puiseux expansion of the limiting equation, which is given in our
case by construction.

The condition of exponential convergence holds because the difference between the limiting system and
the mth equation of the system is equal to

2zE∞(z, w) (L∞(z)− Lm(z)) +
z

1− wz
(wz)

m (8.3.27)

and decreases at exponential speed. Hence, the limiting distribution of de Bruijn index value is identical to
the respective parameter in plain λ-terms.

8.3.6 Leftmost-outermost redex search time in closed terms

Proposition 8.3.5. LetXn denote the number of vertices visited by depth-first traversal algorithm searching
for the leftmost-outermost β-redex in a random closed λ-term of size n (see Section 8.2.6). Then, the random
variable Xn converges in law to a computable, discrete limiting distribution.
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Proof. Recall that the system (8.2.34) defining the generating function L∞(z, u) corresponding to plain terms
with u marking visited nodes is written as

L∞(z, u) = uzL∞(z, u) +A(z, u),

A(z, u) = u
z

1− z
+ z2u2L∞(z, 1)

2
+ zuM(zu)L∞(z, u) + uz(A(z, u)−M(zu))L∞(z, 1)

(8.3.28)

with M(z) being the generating function associated with so-called neutral terms and also Motzkin numbers,
see Remark 8.2.5:

M(z) =
1− z −

√
(1 + z)(1− 3z)

2z
. (8.3.29)

Lm =

λ

Lm+1|u=1

+ Am

Am = Dm +

@

λ

Lm+1|u=1

Lm|u=1

+

@

Mm Lm

+

@

Am\Mm Lm|u=1

Figure 8.11: Specification corresponding to redex search time in closed lambda terms.

Note that including indices in (8.3.28) according to m-openness we obtain

Lm(z, u) = uzLm+1(z, u) +Am(z, u),

Am(z, u) = uz
1− zm

1− z
+ z2u2Lm(z, 1)Lm+1(z, 1)

+ zuMm(zu)Lm(z, u) + uz(Am(z, u)−Mm(zu))Lm(z, 1)

(8.3.30)

where Mm(z) is the generating function for m-open neutral lambda terms. The sequence of functions
(Mm(z))∞m=0 can be obtained from the system of equations

Nm(z) = zNm+1(z) +Mm(z),

Mm(z) = zMm(z)Nm(z) + z
1− zm

1− z
.

(8.3.31)

Comparing (8.3.31) with its limiting counterpart (8.2.32) we note that the M∞(z) − Mm(z) decays at
exponential speed as m → ∞ by virtue of Theorem 4.4.1. As additionally follows from the theorem, the
functions (Mm(z))∞m=0 share the same singularity ρ = 1/3.

Next, the system of equations (8.3.31) can be represented in the form(
Lm(z, u)

Am(z, u)

)
= Km(Lm(z, u), Lm+1(z, u), Am(z, u), z, u). (8.3.32)

In order to apply Theorem 4.4.1 to (8.3.32) we need to replace the condition that the limiting system satisfies
the premises of Drmota–Lalley–Woods theorem by an assumption that the limiting system admits Puiseux
expansion. It was proven in Proposition 8.2.7 that L∞(z, u) has a fixed singularity z∗ which is independent
of u. Therefore, all the functions Lm(z, u) have a fixed singularity z∗ and by applying Proposition 4.1.3, we
obtain that the limiting distribution of the redex search time is discrete.
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8.3.7 Node height profile in closed terms
Like in Section 8.2.7, in the current section we consider unary and natural height profile of variables, abstrac-
tions and applications in closed lambda terms. For this purpose, we provide a variation of the semi-large
powers theorem (see Proposition 3.1.2).

Theorem 8.3.1. Let (fk(ρz))k>0 be a sequence of functions analytic in delta-domain ∆(R) (see Proposi-
tion 3.1.1) for some R > ρ admitting Puiseux series expansions in form of

fk(z) ∼ σk − ak
√

1− z

ρ
(8.3.33)

as z → ρ. Assume there exist β and σ̂ such that the sequences (σk)k>0 and (ak)k>0 satisfy

k∑
j=0

aj
σj
∼ βk and lim

k→∞

k∏
j=0

σk → σ̂. (8.3.34)

Then, for x in any compact subinterval of (0,+∞), as n→∞, it holds

[zn]

k∏
j=0

fj(z) ∼ σ̂
ρ−n

n
S(βx) and x =

k√
n

(8.3.35)

where S(x) is the Rayleigh function defined in Proposition 3.1.2.

Proof. We recall that in the course of the proof of the semi-large power theorem, see [FS09, Theorem IX.16],
the coefficient [zn]f(z)

k is expressed as the following complex contour integral with the help of Cauchy’s
integral theorem:

[zn]f(z)
k

=
1

2πi

∮
f(z)

k dz

zn+1
=

1

2πi

∮
ehn,k(z) dz

z
, hn,k(z) = k log f(z)− n log z. (8.3.36)

With the change of variables z = ρ(1 − t/n) the coefficient [zn]f(z)
k can be accordingly approximated

by the following real integral:

[zn]f(z)
k ∼ −ρ

n

n

1

2πi

∫ ∞
0

et−ax
√
tdt. (8.3.37)

As proven in the referenced literature, this yields the Rayleigh approximation. In the statement of the
current theorem, the function hn,k(z), i.e. the logarithm of the sub-integral expression, is replaced by

h̃n,k =

k∑
j=0

log fj(z)− n log z. (8.3.38)

Accordingly, with the variable change z = ρ(1− t/n) the coefficient [zn]
∏k
j=0 fj(z) becomes

[zn]

k∏
j=0

fj(z) =

k∏
j=0

σk · [zn]

k∏
j=0

(
1− ak

σk

√
1− z

ρ

)
∼ −

ρn
∏k
j=0 σk

n

1

2πi

∫ ∞
0

et−βx
√
tdt (8.3.39)

which has the same form as (8.3.37), finishing the proof.

Proposition 8.3.6. Let Hn be a random variable denoting the unary (respectively natural) height of a
uniformly random variable in a random closed lambda term. Then, with x in any compact subinterval of
(0,+∞), Hn follows the Rayleigh limiting distribution

P(Hn = k) ∼ C√
n
· x

2
e−x

2/4, where x =
k√
n
· C (8.3.40)

with C .
= 4.30187 for unary height and C .

= 1.27162 for the natural height.
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Proof. Let Cm,k(z, u) denote the bivariate generating function corresponding to m-open λ-terms where
variable u marks de Bruijn indices at unary height k − m. Certainly, Cm,k(z, 1) = Lm(z) for each m
and k. Note that, the functions (Cm,k(z, u))∞m=0 satisfy jointly

Cm,k(z, u) = z
1− zm

1− z
+ zCm+1,k(z, u) + zCm,k(z, u)2 if m < k,

Cm,k(z, u) = zu
1− zm

1− z
+ zLm+1(z) + zCm,k(z, u)2 if m = k,

Cm,k(z, u) = Lm(z) if m > k.

(8.3.41)

A straightforward induction yields

∂

∂u
C0,k(z, u)

∣∣∣∣
u=1

=

k∏
j=0

z

1− 2zLj(z)
· 1− zk

1− z
. (8.3.42)

This function is amenable to asymptotic analysis of their coefficients by Theorem 8.3.1. First show that in
the respective Puiseux expansions of the functions

z

1− 2zLj(z)
∼ σj − cj

√
1− z/ρ

the sequence σj tends to 1 at exponential speed, and the sequence cj tends to a limit 2b∞
.
= 4.30187 again

at exponential speed. This holds because in the course of the proof of Theorem 4.4.1 we have shown that
the sequences of coefficients of the Puiseux expansion of (Lj(z))

∞
j=0 (respectively, the the sequence of first

coefficients Lj(ρ), and the sequence of the second coefficients) tend to their respective limits, i.e. to the
coefficients of the Puiseux expansion of L∞(z) exponentially fast. Comparing with the Puiseux expansion
of z

1−2zL∞(z) given in the proof of Proposition 8.2.8 we obtain the limiting values of the sequences (σj)
∞
j=0

and (cj)
∞
j=0. Since the speed of convergence is exponential, the product

∏k
j=0 σj converges to some σ̂, and

the sum of the ratios cj/σj tends to a linear function βk = 2b∞k.
Note that up to a normalising constant, the height profile of other parameters, namely the height profile

distribution of abstractions and applications, remains asymptotically the same because from the generating
function viewpoint only the multiple in front of the product

∏k
j=0 fj(z) changes (see Proposition 8.2.8).

In the same manner, there can be obtained Rayleigh distribution for natural height profile of different
parameters. For example, in the case of variable height profile, we obtain the system of equations for the
family of generating functions Cm,k(z, u) for m-open lambda terms with variable u marking de Bruijn indices
at unary height k −m:

Cm,k(z, u) = z
1− zm

1− z
+ zCm+1,k(z, u) + zCm+1,k(z, u)2, 0 6 m < k;

Cm,k(z, u) = uz
1− zm

1− z
+ zLm+1(z) + zLm(z)2, m = k;

Cm,k(z, u) = Lm(z), m > k.

This implies
∂

∂u
C0,k(z, u)

∣∣∣∣
u=1

=

k∏
j=1

(z + 2zLj(z)) · z
1− zk

1− z
.

Using the same argument as in the previous case, and taking into account two first terms of Puiseux expansion
of (z + 2zL∞(z)) (see proof of Proposition 8.2.8), we obtain again Rayleigh distribution, with the same
parameter as for plain lambda terms.
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Chapter 9

Statistical properties of random maps
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This chapter follows [Bod+18a].

9.1 Introduction

9.1.1 Motivation for our work
Rooted maps form a ubiquitous family of combinatorial objects, of considerable importance in combinatorics,
in theoretical physics, and in image processing. They describe the possible ways to embed graphs into
compact oriented surfaces [LZ04].

The present work focuses on asymptotic enumeration of basic parameters in rooted maps with no re-
striction on genus. From a generating function viewpoint, if the genus of the maps is not fixed, then the
generating function of rooted maps is non-analytic (namely, convergent only at zero) and often satisfies a
Riccati differential equation, in contrast to planar maps for which analytic (convergent) generating functions
abound. The divergent Riccati equations appear frequently in enumerative combinatorics. For example, at
least 39 entries in Sloane’s OEIS [Slo] were found containing sequences whose generating functions satisfy
Riccati equations, including some entries related to the families of indecomposable combinatorial objects,
moments of probability distributions, chord diagrams [CY17; CYZ16; FN00], Feynman diagrams [CLP78],
etc. Some of these are closely connected to maps. Indeed, it is known that rooted maps with no genus
restriction also encode different combinatorial families such as chord diagrams and Feynman diagrams on
the one hand, and different fragments of lambda calculus [BGJ13; ZG15] on the other hand. Thus most
asymptotic information obtained on maps can often be transferred to the aforementioned objects and lead
to a better understanding of them in the corresponding domains.

While the asymptotics and stochastics on planar maps have been extensively studied (see for example
[Ban+01; BB17; BR86; DP13; Lis99]), those on rooted maps with no genus restriction have received com-
paratively much less attention in the literature. Of closest connection to our study here is the paper by
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Arquès and Béraud [AB00], which contains several characterisations of the number of rooted maps and their
generating functions. In particular, they give an explicit formula for the number of maps, expressed as an
infinite sum, from which the asymptotic number of maps with n edges can be deduced (which is (2n+ 1)!!).
Recently, Carrance [Car17] obtained the distribution of genus in bipartite random maps. To our knowledge,
no other asymptotic distribution properties of map statistics have been properly examined so far. Along
a different direction, Flajolet and Noy [FN00] investigated basic statistics on chord diagrams, and Courtiel
and Yeats [CY17] studied the distribution of terminal chords.

From an asymptotic point of view, for planar enumeration, as Bender and Richmond put it in [BR86]:
“The two most successful techniques for obtaining asymptotic information from functional equations of the
sort arising in planar enumeration are Lagrange inversion and the use of contour integration.” An equally
useful analytic technique is the saddle-point method as large powers of generating functions are ubiquitous
in map asymptotics; see [Ban+01; FS09] for more detailed information. In contrast, for divergent series,
Odlyzko writes in his survey [Odl95]: “There are few methods for dealing with asymptotics of formal power
series, at least when compared to the wealth of techniques available for studying analytic generating functions."
We show however that a few simple linearizing techniques are very helpful in deriving the diverse limit laws
mentioned in the Abstract; the approaches we use may also be of potential application to other closely
related problems.

9.1.2 Definitions
For a rigorous definition of a rooted combinatorial map we refer, for example, to [LZ04; AB00]. For our
purposes in this extended abstract we use a less formal but more intuitive definition.

Definition 9.1.1 (Maps). A map is a connected multigraph endowed with a cyclic ordering of consecutive
half-edges incident to each vertex. Multiple edges and loops are allowed. Around each vertex, each pair of
adjacent half-edges is said to form a corner . If there is only one half-edge, there is only one corner. A rooted
map is a map with a distinguished corner.

Figure 9.1 shows some examples of rooted maps. Observe that the first two maps are different since the
cyclic ordering is not the same: in the first map, the pendant edge follows counterclockwise the edge after
the root (the node pointed to by an arrow), while in the second map it precedes in counterclockwise order.
In contrast, the last two maps are equal: although the leaves are at different positions, one can find an
isomorphism between the two maps preserving the vertices, the root and the cyclic orderings around each
vertex. The corners of the leftmost map are displayed in Figure 9.2 (left), showing all the possible rootings
of this map.

Figure 9.1: Three rooted maps. Each root is marked by an arrow. The two last maps are equal.

Definition 9.1.2 (Map features). A face can be obtained by starting at some corner, moving along an
incident half-edge, then switching to the next clockwise half-edge and repeating the procedure until the
starting corner is met. A loop is an edge that connects the same vertex. An isthmus is an edge such that
the deletion of this edge increases the number of connected components of the underlying graph. The degree
of a vertex is the number of half-edges incident to this vertex.
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These definitions are illustrated in Figure 9.2 (right).

Figure 9.2: Left: The small triangles point at every corner of the map. Right: The light-blue line marks the
contour of one face of the map. The double-lined edges are the isthmii of the map. The only loop of the
map is adjacent to the rightmost isthmus, and the vertex incident to this loop has degree 3.

Arquès and Béraud [AB00] prove that the generating function of maps M(z) :=
∑
n>0mnz

n, where mn

enumerates the number of maps with n edges, satisfies

2z2M ′(z) = (1− z)M(z)− 1− zM(z)2, (9.1.1)

a typical Riccati equation whose first few Taylor coefficients readM(z) = 1+2z+20z2+444z3+16944z4+· · · .

Table 9.1: The six map statistics and their limit laws studied in this extended abstract.

Statistics Differential equation Mean Limit law

leaves
L = v + (2− u)zL+ zL2

1 Poisson(1)
+ 2z2∂zL+ z(1− v)∂vL

root isthmic parts C = 1+zC+vzC|v=1C+2z2∂zC 2 Geom( 1
2 )

vertices X = v + zX + zX2 + 2z2∂zX log n N (log n, log n)

loops
Y = v + vzY + vzY |v=1Y 1

2n A new law∗
+2vz2∂zY +v2z(vw−1)∂vY

root edges
E = 1 + vzE + vzE|v=1E 2

3n Beta(1, 1
2 )

+ 2vz2∂zE

root degree
D = 1 + v2zD + vzD|v=1D

n Uniform[0, 2]
+ 2vz2∂zD− v2(1− v)z∂vD

9.1.3 Results and methods

We address in this work the analysis of the extended equations of (9.1.1) for bivariate (and in one case,
trivariate) generating functions M(z, v) :=

∑
n,k>0mn,kz

nvk, where mn,k stands for the number of maps
with n edges and the value of the shape parameter equal to k. We obtain limit laws for the distributions of
six different parameters (see Figures 9.3 to 9.5).
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Figure 9.3: Left: Root vertex degree. Right: Number of root isthmic parts.
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Figure 9.5: Left: Joint distribution of root vertex degree and the number of loops. Right: Number of loops.

We collect the statistics and their limit laws studied here in Table 9.1 for comparison. We see that some
of the limit laws are discrete (Poisson and Geometric), one of them (the number of vertices) is Gaussian with
a logarithmic mean, which we denote by N (log n, log n), and the others are continuous. For the number of
root edges, root degree and loops, the corresponding limit laws are normalized by n, the total number of
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edges. The distribution of the number of loops follows a rather unusual limit law (see Figure 9.5) in the sense
that we can only characterise the limit law by its moment sequence, ηl, which satisfies ηl = η0,l with ηk,l
computable only through a recurrence involving ηk−1,l and ηk+1,l−1. The corresponding probability density
function of this law remains unknown and does not have an explicit expression at this stage (see Figure 9.5).
Finally, by the bijection from [CYZ16] and a known property of chord diagrams in [FN00], it is possible to
deduce the limit laws for the number of leaves.

One technique we use several times in our proofs consists in linearizing the differential equations sat-
isfied by the generating functions, by choosing a suitable transformation, inspired from the resolution of
Riccati equations. Once the dominant term is identified, the analysis for the limit law becomes more or less
straightforward. When such a technique fails, we rely then on the method of moments, which establishes
weak convergence by computing all higher derivatives of M(z, v) at v = 1 and by examining asymptotically
the ratios [zn]∂kvM(z, v)|v=1/[z

n]M(z, 1) (which correspond to the moments of random variable). Such a
procedure also linearises to some extent the more complicated bivariate nature of the differential equations
and facilitates the resolution complexity of the asymptotic problem.

Structure of the Paper. In Section 9.2 we derive the nonlinear differential equations satisfied by the
generating functions of the map statistics. Then in Section 9.3 we sketch the proofs for the limit laws of five
statistics based on generating functions. The Poisson law for the number of leaves (together with the root
face degree and the number of trivial loops) will be proved by a direct combinatorial approach in the last
section.

9.2 Differential equations for maps

In this section, we derive the differential equations satisfied by the bivariate or trivariate generating functions
with the additional variable(s) counting the shape statistics.

Univariate generating function of maps. Since the Riccati equation (9.1.1) lies at the basis of all other
extended equations in Table 9.1, we give a quick proof of it via the recurrence satisfied by mn, the number
of maps with n edges (see Figure 9.6):

mn = 1[n=0] +
∑

06k<n

mkmn−1−k + (2n− 1)mn−1, (9.2.1)

which then implies the Riccati equation (9.1.1).

ormap = or

Figure 9.6: A symbolic construction of rooted maps.
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First, m0 = 1 because there is only one map with 0 edges. Then a map with n edges can be formed
either by connecting the roots of two maps (with k and n− k− 1 edges, respectively) with an isthmus, or by
adding an edge to a map with n− 1 edges, connecting the root and a corner. The number of possible ways
to insert an edge in this way is equal to 2n− 1, because there are 2n− 2 corners in a map of size n− 1, and
there are two possible ways to insert a new edge at the root corner (either before, or after the root). This
proves (9.2.1).

Vertices. Consider now the bivariate generating function X(z, v) =
∑
n,k>0 xn,kz

nvk, where xn,k is equal
to the number of rooted maps with n edges and k vertices. Arquès and Béraud [AB00] showed that

X(z, v) = v + zX(z, v) + zX(z, v)2 + 2z2∂zX(z, v). (9.2.2)

This recurrence can be obtained from (9.2.1) by noticing that no new vertex is created when we connect
two maps with an isthmus, nor when we add a new root edge to a map. Note that X(z, v) satisfies another
functional equation (see [AB00])

X(z, v) = v + zX(z, v)X(z, v + 1),

which seems less useful from an asymptotic point of view.

Root isthmic parts. We count here the root isthmic parts, which are the number of isthmic constructions
used at the root vertex. Note that an isthmic part may not be a bridge because the additional edge constructor
may induce additional connections.

We show that the bivariate generating function C(z, v) =
∑
n,k>0 cn,kz

nvk, where cn,k enumerates the
number of maps with n edges and k root isthmic parts, satisfies

C(z, v) = 1 + zC(z, v) + vzC(z, v)C(z, 1) + 2z2∂zC(z, v). (9.2.3)

In Figure 9.6, the number of root isthmic parts only changes whenever two maps are connected by an
isthmus. This yields vzC(z, v)C(z, 1) instead of zC2.

Root edges. Similarly, consider E(z, v) =
∑
n,k>0 en,kz

nvk, where en,k counts the number of rooted maps
with n edges and k root edges. We show that E(z, v) satisfies

E = 1 + vzE + vzE|v=1E + 2vz2∂zE. (9.2.4)

This again results from the recurrence (9.2.1) and from Figure 9.6: the non-root edges come from the bottom
map in the isthmic construction, yielding the term vzE(z, v)E(z, 1).

Root Degree. Consider the degree of the root vertex. Note that this may be different from the number
of root edges because for the root degree, each loop edge is counted twice, therefore the degree of the root
vertex varies from 0 to 2n. By duality, the distribution of the root face degree is the same as the distribution
of the root vertex degree.

Let D(z, v) =
∑
n,k>0 dn,kz

nvk denote the bivariate generating function for maps with variable v marking
root degree. Then

D = 1 + v2zD + vzD|v=1D + 2vz2∂zD − v2(1− v)z∂vD. (9.2.5)

In this case, the original construction in Figure 9.6 is insufficient, and we need to consider further cases
in Figure 9.7. When an additional edge becomes a loop, it increases the degree of the root vertex by 2;
otherwise, the root degree is increased merely by 1. Note that the equation (9.2.5) is now a bona fide partial
differential equation, making the analysis more difficult.

Leaves. The differential equation for the bivariate generating function of maps with variable v marking
leaves (see Table 9.1) can be obtained in a similar way by considering different cases in the new edge
constructor. The number of special leaf corners is equal to the number of leaves.
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ormap = or

Figure 9.7: Symbolic method to count root degree and loops in rooted maps.

Loops. Finally, we look at the number of loops whose enumeration necessitates the consideration of the
joint distribution of the number of loops and the number of root edges, namely, we consider the trivariate
generating function Y (z, v, w) =

∑
n,k,m yn,k,mz

nvkwm, where yn,k,m denotes the number of rooted maps
with n edges, root degree equal to k, and m loops. We show that Y (z, v, w) satisfies a partial differential
equation

Y = 1 + zvY + zvY |v=1Y + 2z2v∂zY + zv2(vw − 1)∂vY. (9.2.6)

As in the symbolic construction of Figure 9.7, a new edge becomes a loop only if it is attached to one of the
corners incident to the root vertex. The differential equation (9.2.6) is then a modification of (9.2.5) with
an additional variable counting the number of loops.

Note that Equation (9.2.6) is catalytic with respect to the variable v, i.e. putting v = 1 introduces a
new unknown object ∂vY |v=1 to the differential equation. One of the strategies for dealing with catalytic
equations was developed by Bousquet-Mélou and Jehanne [BJ06], generalising the so-called kernel method
and quadratic method. However, their method does not work in our case because our equation is differentially
algebraic.

9.3 Limit laws
This section describes the techniques we employ to establish the limit laws.

From now on, by a random map (with n edges) we assume that all rooted map with n edges are equally
likely. For notational convention, we use X ′ = ∂zX to denote derivative with respect to z. Due to space
limit, we give only the sketches of the proofs.

9.3.1 Transformation into a linear differential equation
For most of the equations in the previous section, it turns out that a transformation similar to that used for
Riccati equations largely simplifies the resolution and leads to solvable recurrences, which are then suitable
for our asymptotic purposes. We begin by solving the standard Riccati equation (9.1.1) and see how a similar
idea extends to other differential equations.

Proposition 9.3.1. The number mn of maps with n edges satisfies

mn

φn
= 2n− 1 +O

(
n−1

)
, where φn =

(2n)!

2nn!
= (2n− 1)!!. (9.3.1)

Proof. We solve the Riccati equation (9.1.1) by considering the transformation

M(z) = 1 +
2zφ′(z)

φ(z)
, (9.3.2)

for some function φ(z) with φ(0) = 1. Substituting this form into the equation (9.2.1), we get the second-
order differential equation 2z2φ′′ + (5z − 1)φ′ + φ = 0. From this equation, the coefficients φn := [zn]φ(z)
satisfy the recurrence φn+1 = (2n+ 1)φn, which implies the double factorial form of φn by φ0 = 1.
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Moreover, by extracting the coefficient of zn in (9.3.2), we obtain a relation between the coefficients
mk and φ`. By the inequality mn > (2n − 1)mn−1 (see (9.2.1)), we then deduce the asymptotic relation
(9.3.1).

Theorem 9.3.1. Let Xn denote the number of vertices in a random rooted map with n edges. Then Xn

follows a central limit theorem with logarithmic mean and logarithmic variance:

Xn − E(Xn)√
V(Xn)

d−→ N (0, 1), E(Xn) ∼ log n, V(Xn) ∼ log n. (9.3.3)

Proof. Similar to (9.3.2), we define a bivariate generating function S(z, v) =
∑
n>0 sn(v)zn such that

X(z, v) = v +
2zS′

S
, S(0) = 1.

Substituting this X(z, v) into (9.2.2) leads to a linear differential equation from which one can extract the
recurrence

sn(v) =
(2n+ v − 2)(2n+ v − 1)

2n
sn−1(v).

We then get an explicit expression for sn(v), from which we deduce, by singularity analysis, that

E(vXn) =
2v−1

Γ(v)
nv−1(1 +O(n−1)),

and conclude by applying the Quasi-Powers Theorem [FS09; Hwa98].

A finer Poisson(log n+c) approximation, for a suitably chosen c, is also possible, which results in a better
convergence rate O(log n)−1 instead of (log n)−

1
2 ; see [Hwa99] for details.

Theorem 9.3.2. Let Cn denote the number of root isthmic parts in a random rooted map with n edges.
Then,

Cn
d−→ Geom

(
1
2

)
.

Proof. Since C(1, z) = M(z), we use again the substitution (9.3.2) and apply it to (9.2.3):

2z2(φC ′ + vφ′C) = (1− (1 + v)z)φC − φ.

The trick here is to multiply both sides by φ(z)v−1 and set Q(z, v) = φ(z)vC(z, v). We then obtain

2z2Q′ = (1− (1 + v)z)Q− φv.

Using the recurrence for the normalised coefficients q̂n(v) := qn(v)/φn and dominant-term approximations,
we find that the n-th coefficient of Q is proportional to

q̂n(v) =
v

2n

∑
16k6n

(n
k

)v/2
+O(n−1/2) =

v

2− v
+O(n−

1
2 ).

This corresponds to a (shifted by 1) geometric distribution with parameter 1
2 . By the definition Q(z, v) =

φ(z)vC(z, v), we deduce that the limiting distribution of Cn is also geometric with parameter 1
2 .

Theorem 9.3.3. Let En denote the number of edges incident to the root vertex in a random rooted map
with n edges. Then En follows asymptotically a Beta distribution:

En
n

d−→ Beta
(
1, 1

2

)
, (9.3.4)

with the density function 1
2 (1− t)− 1

2 for t ∈ [0, 1).
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Proof. We use again the substitution E(z, 1) = M(z) = 1 + 2z φ
′

φ in (9.2.4), giving

2vz2(φE′ + φ′E) = (1− 2vz)φE − φ.

With Q(z, v) = φ(z)E(z, v), we then obtain

2vz2Q′ = (1− 2vz)Q− φ. (9.3.5)

This linear differential equation translates into a recurrence for the coefficients qn(v) of Q(z, v), which yields
the closed-form expression

qn(v) = 2nn!
∑

06j6n

(
2j

j

)
4−jvn−j . (9.3.6)

Returning to E(z, v), we see that its coefficients behave asymptotically like qn(v). This implies the Beta
limit law (9.3.4) for the random variable En/n since

(
2j
j

)
4−j ∼ (πj)−1/2 for large j.

Theorem 9.3.4. Let Dn denote the degree of the root vertex in a random rooted map with n edges. Then,
Dn, divided by the number of edges, converges in law to the uniform distribution on [0, 2]:

Dn

n

d−→ Uniform [0, 2] . (9.3.7)

Proof. The substitutions

D(z, 1) = M(z) = 1 +
2zφ′

φ
, and D(z, v) =

Q(z, v)

φ(z)

lead to a partial differential equation, which in turn yields the recurrence for the coefficients qn(v) :=
[zn]Q(z, v):

qn(v) = v(2n− 1 + v)qn−1 − v2(1− v)q′n−1(v) + φn.

We then get the exact solution qn(v) = φn(1 + v + · · ·+ v2n).
In order to proceed, we show the following curious result:

mn = −[zk+1]
1

φ(z)
. (9.3.8)

From the definition of φ(z) we have two recurrences, following from the respective convolution identities,

first for φ(z)M(z) and the second for zφ′(z)× 1

φ(z)
:

n∑
k=0

mkφn−k = (2n+ 1)φn,

mn = 1[n=0] + 2

n∑
k=0

(n− k)φn−k[zk]
1

φ(z)
.

By combining these two recurrences, we obtain (9.3.8).
Accordingly, (9.3.8) implies that dn(v) := [zn]D(z, v) ∼ qn(v). This, in turn, implies the uniform limit

law (9.3.7).

A more intuitive interpretation of this uniform limit law is given in the next section.
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9.3.2 Approximation and method of moments
Unlike all previous proofs, we use the method of moments to establish the limiting distribution of the number
of loops. The situation is complicated by the presence of the term involving ∂vY in (9.2.6), which introduces
higher order derivatives with respect to v at v = 1 when computing the asymptotic of the moments.

Theorem 9.3.5. Let Yn denote the total number of loops in a random rooted map with n edges. Then

Yn
n

d−→ L, (9.3.9)

where L is a probability measure on [0, 1].

Proof. First, we show by induction that there exist constants ηk,`, such that as n→∞,

[zn]∂kv∂
`
wY (z, v, w)

∣∣
v=w=1

∼ ηk,`nk+`+1φn, k, ` > 0. (9.3.10)

For k = ` = 0 the statement clearly holds. Let y(k,`)
n := [zn]∂kv∂

`
wY (z, v, w)

∣∣
v=w=1

for larger k, ` > 0. By
translating (9.2.6) into the corresponding recurrence for the coefficients and by collecting the dominant terms
(using the induction hypothesis (9.3.10)), we deduce that

y(k,`)
n ∼ (2n+ k)y

(k,`)
n−1 + `y

(k+1,`−1)
n−1 + (2kn− 2k)y

(k−1,`)
n−1 + 1[k=0]y

(k,`)
n−1 .

Accordingly, we are led to the recurrence

ηk,` =
1

k + 2`+ 1[k>0]
(2kηk−1,` + `ηk+1,`−1), (9.3.11)

for k + ` > 0 (provided that we interpret ηk,` = 0 when any index becomes negative). In particular, when
` = 0, we obtain the moments of the random variable En, the number of root edges: ηk,0 = 2k+1

k+1 , which
coincides with the moments of the uniform random variable Uniform[0, 2].

Let us present several first coefficients:

`

k
0 1 2 3

0 2 2 8/3 4
1 1 7/6 26/15 14/5
2 7/12 139/180 391/315 887/420
3 139/360 1133/2016 21631/22680 63559/37800
4 1133/4032
5 0.2188..
6 0.1787..
7 0.1510..
8 0.1308..
9 0.1155..

Note that η0,` · (2`+ 1)! are integer numbers:

(2, 6, 70, 1946, 101970, 8735782, . . .)

as well as
η0,` · (2`− 1)! · ` : (1, 7, 139, 5665, 397081, 42817831, . . .)
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Neither of them is present in OEIS.
Let us show that the coefficients η0,` satisfy Carleman’s condition

Sn :=

n∑
`=1

η
1/2`
0,` −→

n→∞
∞ .

Indeed, as follows from the recurrence (9.3.11),

η0,` >
`η1,`−1

2`
=

1

2
η1,`−1 >

1

2
· 2η0,`−1

2 + 2`− 2
=

1

`
η0,`−1 ,

in what follows that η0,` >
2

`!
. Therefore, since (

1

`!
)1/2` ∼ e1−log ` ∼ e

`
, it follows that partial sums grow at

least as fast as harmonic sum, and therefore, the sequence of partial sums is divergent. In particular, this
implies that the condition of Hausdorff moment problem is satisfied, i.e. η0,` uniquely determine the limiting
random variable defined on [0, 1].

9.4 Combinatorics of map statistics
We examine briefly the combinatorial aspect of the map statistics, relying our arguments on the close
connection between maps and chord diagrams (see [Cor09]).

Recall that a chord diagram [FN00] with n chords is a set of vertices labelled with the numbers {1, 2, . . . , 2n}
equipped with a perfect matching. A chord diagram is indecomposable if it cannot be expressed as a con-
catenation of two smaller diagrams.

Why the root degree follows a uniform law? We begin with Cori’s bijection [Cor09] between rooted
maps and indecomposable diagrams. In this bijection, each chord connecting labels i and j corresponds to
matching of the half-edges with labels i and j. The set of half-edges incident to each vertex of the resulting
map corresponds to the set of nodes to the right of the starting points of the so-called outer chords, i.e.
chords that do not lie under any other chord.

Proposition 9.4.1. There exists a bijection between rooted maps of root degree d with n edges, and
indecomposable diagrams with n+ 1 chords such that the vertex k − 2 is matched with vertex 1.

Once this proposition is available, it leads to a simpler and more intuitive proof of Theorem 9.3.4 as
follows. In a (not necessarily indecomposable) diagram, the label of the vertex matched with 1 follows
exactly a uniform law on {2, . . . , 2n}. But a diagram is almost surely an indecomposable diagram (because
its cardinality is asymptotically the same); thus the label of the vertex matched with 1 divided by 2n obeys
asymptotically a uniform law on [0, 1] (or Uniform[0, 2] if divided by n as in Theorem 9.3.4).

Uniform random generation. Cori’s bijection is also useful for generating random rooted maps. Uni-
formly sampling a random diagram can be achieved by adding the chords sequentially one after another. If
this procedure results in an indecomposable diagram, it is rejected (which occurs with asymptotic probability
0). A successful sampled diagram is then transformed into a map using Cori’s bijection [Cor09]. Figure 9.8
shows two instances of random maps thus generated.

The number of leaves. Another bijection in [CYZ16] is useful in proving the Poisson limit law of the
number of leaves. This bijection sends leaves of a map into the isolated chords (namely, edges connecting
vertices k and k+ 1) of an indecomposable chord diagram. According to [FN00, Theorem 2], the number of
isolated edges in a random chord diagram has a Poisson distribution with parameter 1. We can then deduce
the following theorem.

Theorem 9.4.1. The number of leaves in a random map with n edges follows asymptotically a Poisson law
with parameter 1.
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Figure 9.8: Random rooted maps, respectively with 1000 and 20000 edges.

Two dual parameters. We briefly remark that two other parameters, namely root face degree and the
number of trivial loops do not seem easily dealt with by the method of generating functions because marking
them requires additional nested information such as the degrees of all the faces. However, such parameters
can be easily marked in their corresponding dual maps. Their limit distributions are uniform and Poisson,
respectively.
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Chapter 10

Applications of random sampling
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10.1 Software verification
The tactics of program verification range from experimentation to formal verification techniques which prove
the correctness of a program. While formal verification is a promising field, most of the industry-scaled
applications are too heavy to be fully rigorously described.

An example of a very general application is an optimising compiler . Intrinsically, a compiler of any pro-
gramming language typically takes an input and generates a so-called intermediate representation (abstract
syntax tree) which is essentially a tree-like structure which keeps the abstract nature of the code written and
is converted to the byte-code later. Most optimisations are done at the stage of the intermediate representa-
tion then. This standardised representation allows to use well-established tools like GNU compiler collection
and LLVM (low-level virtual machine) to process a variety of programming languages in a uniform manner
and for different target architectures.

To have a picture how optimising compilers actually work in reality, we may consider a very widely-used
example which is an compiler’s optimisation level in GCC. A variety of -O flags such as
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-O0, -O1, -O2, -O3, -Ofast

provide different levels of speed optimisation. While the nature of such optimisations may be highly technical,
involving how the float numbers are multiplied, the optimisations regarding the intermediate representation
can be considered as combinatorial ones. At the same time, optimisation above -O2 is typically not recom-
mended as it yields some undefined behaviour and breaks some packages included.

Similar optimisation flags exist for different compilers, and external code optimisers can be used as well.
In order to avoid undefined behaviour, testing or verification is required. One prominent example of an
optimising compiler is CompCert for C99 written by a team led by Xavier Leroy [Ler+12]. This optimising
compiler is fully programmed and proved in Coq, an interactive theorem prover programming language
associated with Thierry Coquand and Gérard Pierre Huet [Bar+99].

Another approach, discussed in [Pa l12] consists in generating many random input instances (programs)
and verifying statistical properties of these instances before and after optimisations. This approach does
not provide rigorous evidence, but rather a heuristic one. For example, a tool CSmith generating random
C programs [Yan+11], allowed to detect as many as 325 previously unreported bugs in GCC, LLVM, some
commercial C compilers and even CompCert whose core is formally verified. The technique suggested
in [Pa l12] is to generate simply typed lambda terms in order to test Haskell’s optimising compiler.

One of the new applications of the multiparametric Boltzmann tuner Chapter 5 is the generation of
untyped lambda terms also known as closed lambda terms, with a lot of flexibility and control. It is known
that random generation with a uniform distribution corresponding to univariate Boltzmann samplers is not
sufficient to quickly find the bugs in the compilers, while the latter fail only at some very specific corner
cases, when one subset of the parameters behaves normally, and the other part takes very large or very small
values. What is also important, is the ability to find relatively small counterexamples, since the size of the
generated object can also be tuned.

As we show in Chapter 8, specifications originating from unambiguous context-free grammars allow to
mark several parameters in plain and closed lambda terms allowing skewed random generation. A few
possible examples of parameters might include:

(i) number of atomic nodes of distinguished colors;

(ii) number of redexes;

(iii) number of head abstractions;

(iv) number of closed subterms;

(v) number of any tree-like patterns.

While generation of simply typed lambda terms stays an open problem for now, the flexible generation of
corresponding closed terms can potentially lead to advances in testing techniques.

10.2 Belief propagation for RNA design

One of the practical problems requiring a proper multiparametric Boltzmann tuning was communicated to me
by Yann Ponty and his coauthor Sebastian Will. In this section, the pictures are re-drawn, as the original
pictures are copyrighted by Springer. The concepts of the pictures and the description of the presented
application come entirely from [Ham+19], while the method used in the aforementioned paper is different.
On a general level, the problem is formulated as follows.

Problem 10.2.1. Generate, uniformly at random, RNA structures of given length N , such that, given
a list of secondary structures (s1, s2, . . . , sm) and corresponding energies (E1, E2, . . . , Em), each secondary
structure si is possible for generated RNA chain and has an (average) energy Ei.
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This section is intended to give an intuitive explanation of all the terms introduced and guide through
the process of random generation.

An RNA chain is a sequence of symbols from the alphabet {A,U,G,C}, corresponding to nucleotides
adenine, uracil, guanine and cytosine. The fifth element, thymine, conventionally denoted by letter T,
replaces uracil in DNA. The secondary structure of an RNA is a chord diagram with non-intersecting chords
constructed on a subset of symbols of the sequence such that each chord may connect only three possible
combinations C − G, G − U and U − A. Sampling tree alignments from Boltzmann distribution is also
considered in [CCP16].

In a basic setting, each of the three types of chords receives its own energy value determined from chemical
properties, and the total energy of the secondary structure configuration is then obtained by adding up all
the compound energies of the links.

Remark 10.2.1. In reality, the interactions of the adjacent pairs of the secondary configuration are also
taken into account, but they are negligible. Their contribution can be investigated by considering a table of
interactions of adjacent pairs. The next refinement requires taking triples, etc.

Figure 10.1: An example of a
secondary structure

Figure 10.2: RNA secondary structure viewed as a chord diagram

The first step is to construct a graph whose edges are the union of the chords of the chord diagrams
corresponding to the secondary structures.

Lemma 10.2.1. There exists a nucleotide assignment if and only if the resulting graph is bipartite.

Proof. According to a given nucleotide assignment, the vertices can be partitioned in such a way that the
nodes with labels C and U belong to the first part, and the nodes with labels G and A belong to the second.
The edges can exist only between the parts, but not inside them, therefore a graph is bipartite. Conversely,
if a graph is bipartite, it is possible to label all the nodes from the first part into G, and from the second
part into U.

Curiously, the number of RNA satisfying all the secondary structures, can be expressed the number of
independent sets, that is, subsets of nodes having no pairwise edges between them.

Lemma 10.2.2. The number of nucleotide assignments complying the secondary structures forms a 2`-to-1
bijection with distinguished independent sets of the graph formed of chords of the secondary structures,
where ` is the number of connected components.

Proof. Consider one connected component in a graph of chords. The goal is to choose nucleotide labellings
in such a way that the nodes from the distinguished independent set have only labels C and A, and all other
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Figure 10.3: Several superimposed secondary structures Figure 10.4: Graph of nucleotide connec-
tions from the secondary structures

nodes can only have labels G and U. It is clear that once one of the labels in a graph is fixed, all other labels
in this connected component can be reconstructed uniquely. Therefore, for every connected component,
there are exactly two label choices.

The problem of enumeration of independent sets is known to be #P-complete, so no hope for a polynomial
algorithm exists, and the presence of the energies and the tuning only makes the problem even more complex.

Such problems are known to be fixed parameter tractable, by analogy with independent sets in sparse
random graphs with bounded excess of the complex component. A special tool called tree-decomposition is
introduced, and the complexity of enumeration becomes a polynomial of the input, with a constant multiple
possibly exponential in a special parameter called tree-width.

Definition 10.2.1 (Tree decomposition). A tree decomposition of G is a rooted tree T such that

(i) every node of T represents a subset of nodes of G;

(ii) the root represents an empty set of nodes;

(iii) if an edge connects a parent and a child node, the contents of the parent node can be formed by
removing an arbitrary subset of vertices from the child node and by adding at most one new node;

(iv) every edge u− v of G is present in T , that is, connects two nodes t1 and t2 such that u ∈ t1 and v ∈ t2;

(v) for every node v ∈ G the subgraph corresponding to all nodes t ∈ T containing v forms a tree.

The treewidth of the tree decomposition is equal to the maximum cardinality over nodes t ∈ T . It can
be shown that if a graph has excess r, it has a tree-decomposition with a tree-width not exceeding r + 3,
constructible by a dfs.

A physical notion of the partition function is synonymic to the notion of the generating function where
the size of the object corresponds to the energy of a physical state, and the value of the argument of the
generating function is related to the temperature of the system.

Definition 10.2.2. The partition function corresponding to a given list of secondary structures (s1, . . . , sm)
is defined as

P (β) =
∑
S

exp (−βE(S; s1, . . . , sm)) (10.2.1)

where the sum is taken over all admissible RNA sequences S and E(S; s1, . . . , sm) is the energy of S taken
as a sum of energies corresponding to each of the energies of the secondary structures.
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To each node of the tree-width we assign a functionm(β;x1, . . . , xe) whose arguments (x1, . . . , xe) are the
nodes that are not removed while passing to the parent of this node, the values that each of the arguments
may take is a set of possible nucleotide assignments. The value β corresponds to the argument of the
partition function. The value of the function m(x1, . . . , xe) can be then interpreted as the partition function
of a partial assignment corresponding to the subtree of the given vertex.

10.2.1 Belief propagation

Belief propagation, also known as sum-product message passing algorithm [K+01] is designed to compute the
marginal distributions of discrete random variables. Let g(x1, . . . , xn) be some real-valued function whose
arguments take the values in a finite alphabet Σ. We are interested in computing marginal functions in the
form

gi(xi) :=
∑
x1

· · ·
∑
xi−1

∑
xi+1

· · ·
∑
xn

g(x1, . . . , xn). (10.2.2)

This seems to be an easy task if g(x) represents a joint probability function of independent random variables,
that is, when this function is expressed as a product of individual arguments, dependent on a single argument
each. It turns out that in some more general situations, a fast computation algorithm is possible.

We consider situations when
g(x1, . . . , xn) =

∏
j∈J

fj(Xj) (10.2.3)

where each Xj is a subset of {x1, . . . , xn} and J is a discrete index set. For example,

g(x1, x2, x3, x4, x5) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5). (10.2.4)

A factor graph is then defined as a bipartite graph whose nodes are of two types: the variable nodes and
argument nodes. The sum-product algorithm is initially defined for the case when the factor graph is a tree,
but in modern applications related to physics and machine learning, it is applied to situations when the
underlying graphs contains cycles.

In order to directly see how the marginal distributions of a tree-like function can be simplified straight
away, using the example above, we use the distributive property and rooting a tree at the corresponding
vertex to obtain

g1(x1) = fA(x1)
∑
∼{x1}

(
fB(x2)fC(x1, x2, x3)

( ∑
∼{x3}

fD(x3, x4)
)( ∑
∼{x3}

fE(x3, x5)
))
, (10.2.5)

where
∑
∼{xi} denotes a sum taken over all arguments except xi.

However, a message-passing procedure makes the process even more efficient by de-symmetrising the tree
and starting a computation simultaneously at all its leaves. The messages are passed from variables to
functions, and from functions to variables, to all of their neighbours. They are defined as follows:

µx→f (x) :=
∏

h∈n(x)\{f}

µh→x(x), (10.2.6)

µf→x(x) :=
∑
∼{x}

f(X)
∏

y∈n(f)\{x}

µy→f (y)

 , (10.2.7)

where n(v) denotes the set of neighbours of a given node v, and n(f) denotes the set of arguments of the
function f . The meaning of x in the index of µx→f and µf→x is the corresponding index of the variable x
in the list of arguments (x1, . . . , xn), while the meaning of x in the argument of µx→f (x) is the value of x
which is taken from the alphabet Σ where x is allowed to take values.
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It is shown in [K+01] that after initialising the message functions at leaves (both variable leaves and
function leaves) as follows:

µf→x(x) := f(x), (10.2.8)
µx→f (x) := 1, (10.2.9)

and running the message-passing until every edge is initialised.

10.2.2 Message passing for tree-decomposition of RNA
Define a message function mt1→t2 from a child node t1 ∈ T to a parent node t2 ∈ T as follows: it takes a set
of arguments t1 ∩ t2 and

mt1→t2(xt1∩t2) :=
∑

allowed xt1\t2

∏
t→t1

mt→t1(xt∩t1). (10.2.10)

The allowed arguments xt mean that inserting nucleotides at the positions corresponding to the nodes of t
induce only complementary “allowed” pairs.

Starting the message passing at leaves and finishing atm∅ it is then possible to compute the total number
of independent sets. What is more important, we can modify the message function to add an argument which
is a variable marking the energy of the configuration in a respective secondary structure, to obtain a partition
function. The adjustment is seen as

mt1→t2(xt1∩t2) :=
∑

allowed xt1\t2

∏
t→t1

mt→t1(xt∩t1)u−energy of added edge
c . (10.2.11)

where uc is a marking variable with an index c representing the index of the secondary structure to which
an edge belongs to. (If there is an edge belonging to several secondary structures, a product should be then
taken.)

This approach builds an algebraic grammar of multivariate generating functions. By setting the values of
the variables uc it is possible to do Boltzmann generation from this grammar to obtain RNA sequences with
expected values of energies. In the paper [Ham+19] the weight optimisation is done using the backtrack,
while using the current approach a direct optimisation is possible.

10.3 Bose–Einstein condensate in quantum harmonic oscillator
Bose–Einstein condensation is a phenomenon occurring in quantum physics and can be described as follows:
an gas of N particles (typically, bosons, like photons or any other particle with an integer spine, without
going into too much details) is confined in a magnetic trap at a certain temperature; each of the bosons is
only allowed to take a discrete set of energies and the joint probability of energies is a well-defined function,
which is also a function of temperature; then, as the temperature lowers, below a certain critical point t < tc
most of the bosons with high probability appear in the lowest possible energy state.

So, essentially, Bose–Einstein condensation can be regarded as a purely probabilistic phenomenon, if
rigorously formulated. More generally, this phenomenon occurs when the particles live in dimension d where
d is not necessarily equal to 3. One of the modern observations in network science, in the study of real-
world social networks by Bianconi and Barabási [BB01] in 2001 was the explanation of the uneven degree
distributions in such networks. This explanation suggested that an evolving graph can be regarded as a
process of adding particles into a bosonic gas. Each particle then corresponds to a half-edge in the graph,
and Bose–Einstein condensation can be viewed as a topological phase transition.

One of possible applications of multidimensional tuning is weighted generation of integer partitions. In
fact, integer partitions (such as 16 = 1 + 3 + 3 + 4 + 5) can be represented as the states of one-dimensional
quantum harmonic oscillator. Each summand of the integer partition corresponds to a particle, the value of
the summand corresponds to the energy of the partition. The generalisation to multidimensional case is done
by further partitioning of each of the summands of the partition into at most d summands, so that a particle

156



Bose gas network evolution

temperature temperature
energy energy
particle half-edge

number of energy levels 6 number of nodes
Bose–Einstein condensation topological phase transition

Table 10.1: Comparison of Bose gas and network evolution

assembly is then viewed as partition of partitions. In fact, the Bose–Einstein condensation is nothing else
but the limit shape of the partition, assuming that the partitions are taken from Boltzmann distribution.

Weighted partition Random particle assembly

Sum of numbers Total energy
Number of colours Dimension (d)
Row of Young table Particle
Number of rows Number of particles

Number of squares in the row Energy of a particle (λ)
Partition limit shape Bose–Einstein condensation(

d+λ−1
λ

)
Number of particle states

Table 10.2: Correspondence between weighted integer partitions and quantum oscillator states

10.4 Multiclass queueing networks

Queueing theory is an important field of industrial engineering. A queueing network can be described as a
directed graph whose nodes are queues (also called servers) and are capable of processing jobs (sometimes
called clients or customers). The rules according to which the jobs are processed, differ over a large variety
of queue types and network types. The choice of the design of a queueing system for particular practical
purposes is dictated by statistical behaviour of each of the systems under process arrival assumptions.
Therefore, a detailed understanding of such behaviours is crucial for applications.

One of the possible approaches to queueing theory is a detailed analysis of the case when there are two
processors by representing the capacity vector of the two queues by an integer point and by considering
the evolution of the system as a random walk on an integer plane. This approach and its generalisations is
extensively covered in a very recent book [Fay+99].

Another approach to multiparametric queueing systems is to compute the probability generating func-
tion of the stationary distribution and study the limiting properties using the multidimensional complex
integration techniques.

10.4.1 Gordon–Newell queueing network

In Gordon–Newell network, all the customers are indistinguishable. A queueing network is represented by a
complete graph with m nodes whose behaviour is defined by the following rules:

1. The total population of the graph is K = k1 + k2 + . . . + km where ki is the number of customers in
the queue number i;
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2. Each queue is designed by principle first in, first out ;

3. Service time at queue i is exponentially distributed with parameter µi; after a client is served, he jumps
from queue number i to queue number j with probability pij where (pij)

m
i,j=1 is a given transition

matrix;

4. No client enters and no client leaves the network.

It is proven in [GN67] that this queueing network has a stationary distribution whose probability generating
function is

p(z) =
1

(1− ρ1z) · · · (1− ρmz)
, (10.4.1)

where ρi = λi/µi, and λi is the stationary vector of the transition matrix

λi =

m∑
j=1

λjpji.

The Boltzmann generation from the stationary distribution of Gordon–Newell network is described in [Rov17]
and sampling techniques from network with bounded capacities, such as fast computation of the partition
function (here: the synonym of the probability generating function) is given in [BBR14].

Figure 10.5: An example of a state of Gordon–Newell network

10.4.2 Introducing customer classes
The product form that the generation function Equation (10.4.1) has, suggests that there should be an
analog of the symbolic approach for queueing networks: the generating function specifies the sequence of m
sequences, while this description is explicitly corresponding the definition of the network.

A multiclass generalisation, where instead of indistinguishable customers, J classes of customers are
introduced, is considered in [Kog02; PW08; BM93]. In these papers, the authors use the techniques of
multivariate saddle-point integration to obtain the asymptotic properties of such networks when the number
of nodes and customer types is possibly large.

The first example of a multiclass queueing network with m processor sharing stations and J customer
types has a limiting distribution with a probability generating function

G(z1, . . . , zJ) =
1∏m

k=1(1−
∑J
j=1 ρjizj))

(10.4.2)
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where the matrix (ρji)j,i is determined by network properties. A slightly modified case includes one infinite
server (such that every arriving job is served immediately and this the waiting time is zero) and m processor
sharing stations. The corresponding probability generating function of the stationary distribution then
becomes

G(z1, . . . , zJ) = ez1+...zJ
1∏m

k=1(1−
∑J
j=1 ρjizj))

. (10.4.3)

The values ρji are determined by network properties.
Other variations are possible. One common thing about these networks is that the stationary distribution

has product form which yields a simple expression for the multivariate generating function. In such a case,
sampling from a weighted distribution is possible, with additional control over the expected queue capacities.

10.5 Combinatorial learning and Maximum Likelihood
The method of maximum likelihood estimation plays a central role in mathematical statistics. It allows
to construct asymptotically effective1 estimates for the unknown parameters using a finite amount of data
available, assuming that the data comes from a known family of distributions with fixed values of parameters.

Consider the following basic example. If X1, . . . , Xn ∈ Rd are independent random variables from distri-
bution Pθ, and θ ∈ Θ ⊂ Rr is an r-dimensional parameter, the log-likelihood function is defined as

L(X1, . . . , Xn; θ) := logPθ(X1 ∧ · · · ∧Xn) =

n∑
i=1

logPθ(Xi). (10.5.1)

Without a priori knowing the value θ, the function can be computed for all possible values of this (vector)
parameter. The value of this parameter is then estimated as

θ̂ = θ̂(X1, . . . , Xn) := arg max
θ∈Θ

L(X1, . . . , Xn; θ). (10.5.2)

The obtained estimate is then a random variable, since it is dependent on random quantities X1, . . . , Xn.
Under certain smoothness assumptions on the distribution family, the obtained estimate θ̂n can be proven

to converge to a normal random variable at speed
√
n with the mean value equal the target parameter, and

the variance equal to so-called asymptotic information matrix, or Fisher information matrix.
The idea inside the maximum likelihood method extends further than just parameter estimation and can

be applied in the following settings:

1. regression;

2. model selection;

3. density estimation

4. hypothesis testing;

5. generalised linear models;

10.5.1 Multiparametric tuning and maximum likelihood approach
The procedure of multiparametric tuning described in Chapter 5, can be viewed as likelihood optimisation.
Consider a multivariate generating function F (z) for a combinatorial class F :

F (z) :=
∑
n�0

anz
n.

1Maximum likelihood estimator achieves the Cramér–Rao bound for asymptotically large sample sizes; when the size of the
sample is finite, non-asymptotic improvements upon maximum likelihood estimation method are possible, such as unbiased
variance estimator for normal variable.
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Suppose that a sequence of combinatorial objects X1, . . . , XN has been sampled. It is convenient to assume
that the whole generated objects are not available, but rather the corresponding values of their parameters
n1, . . . ,nN . Then, the log-likelihood function for the sample is written as

L(n1, . . . ,nN ; z) =

N∑
i=1

Pz(χ(X) = ni) =

N∑
i=1

log
aniz

ni

F (z)
, (10.5.3)

where χ(X) is a function returning the size parameter vector of X.
Taking the equation for maximum likelihood estimate, we obtain

∇zL(n1, . . . ,nN ; z) = 0

which is equivalent to ∑N
i=1 ni
N

= z
∇F (z)

F (z)
. (10.5.4)

Interesting things happen when we use the logarithmic transform z 7→ eξ. From statistical viewpoint, it
corresponds to passing to an exponential family in a canonical form. In particular, this representation gives
an alternative proof that logF (eξ) is convex.

Lemma 10.5.1. Let Ξ denote the random vector yielding the parameter value n for Boltzmann distribution
with parameter z. Let z = eξ. Then,

∇2
ξ logF (eξ) = Covz[Ξ]. (10.5.5)

Since the covariance matrix is non-negative definite, the function logF (eξ) is convex.

Proof. Since the variables are identically distributed, it is sufficient to prove the lemma for a single random
variable Ξ. We shall use the fact that for any family of distributions, Fisher information at the is equal to
the curvature matrix, defined as follows:

Covθ∗ ∇L(X, θ)|θ=θ∗ = −Eθ∗∇2L(X, θ)|θ=θ∗ . (10.5.6)

The first gradient of the likelihood function can be computed as

∇ξL(Ξ, eξ) = ∇ξ[log aΞ + Ξ>ξ − logF (eξ)] = Ξ−∇ξ logF (eξ).

The variance of this gradient under the true value ξ = ξ∗ is equal to

Covξ∗ [Ξ−∇ξ logF (eξ)] = Cov Ξ.

Next, the expected value of the log-likelihood can be expressed as

Eξ∗L(Ξ, eξ) =
∑
n

L(n, eξ)
ane

n>ξ∗

F (eξ)

=
1

F (eξ)

∑
n

[
en
>ξ∗an log an + n>ξ · anen

>ξ∗ − anen
>ξ∗F (eξ)

]
.

Taking the second derivative, we obtain

∇2
ξEξ∗L(Ξ, eξ) = −∇2

ξ logF (eξ)

∑
n ane

n>ξ∗

F (eξ)
. (10.5.7)

By using the fact that Fisher information is equal to the curvature matrix, we conclude the proof.
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10.5.2 Hidden parameter estimation

As we seen in the previous section, there are several intriguing connections between the likelihood estimation
method and multiparametric Boltzmann tuning. However, if written explicitly, the maximum likelihood es-
timation does not give any new non-trivial parameter estimator, as the estimation of the expected parameter
is just the average value among the observed parameters.

Nonetheless, such an analogy gives rise to a new approach of hidden parameter estimation, which we show
to be #P-complete. Suppose that the objects are sampled from Boltzmann distribution with parameter

z = (z1, . . . , zk)

but we observe only some part of the parameters (n1, . . . , n`), ` < k. The problem is to estimate the whole
vector z using the available data.

Let us assume that the full vector of Boltzmann parameters is (z,u), while the observable part is only
corresponding to z. We need to estimate the whole vector (z,u). After expanding the likelihood maximiser
equations, we obtain

N∑
i=1

ni −N
∇zF (z,u)

F (z)
= 0, (10.5.8)

N∑
i=1

∇u[zni ]F (z,u)

[zni ]F (z,u)
−N∇uF (z,u)

F (z,u)
= 0. (10.5.9)

Since the coefficient extraction operator is known to be #P-hard for generating functions from algebraic
grammars Chapter 5, the problem of hidden parameter estimation is also #P-hard.

At the same time, an efficient relaxation of this problem can be constructed and solved as a series of N
individual tuning problems. The principle of Boltzmann sampling itself relaxates the size by superimposing
Boltzmann distribution, so that

zn[zn]F (z) ≈ F (z∗(n)), z∗(n)
F ′(z∗(n))

F (z∗(n))
= n. (10.5.10)

Multiparametric tuning provides an oracle for computing z∗(n) numerically. By using the same replacement
in the coefficient extraction problem, namely,

∇u[zni ]F (z,u)

[zni ]F (z,u)
≈ ∇uF (z∗(ni),u)

F (z∗(ni),u)
, (10.5.11)

and after finding the vectors z∗(ni) by solving N tuning problems, we are able to solve the relaxed approx-
imation of the hidden parameter estimation problem.

To conclude, the combination of maximum likelihood approach, and combinatorial Boltzmann approach
can lead to some new developments and problem formulations on the intersection of mathematical statis-
tics and analytic combinatorics. The main contribution lies in the possibility of taking advantage of the
combinatorial source of the observed scalar parameters ni that are not anymore just numbers, but some
meaningful quantities like the number of nodes in a tree, or its height, or any other parameter. All this allows
to do a more meaningful data analysis assuming that a corresponding model generates the data. Further
tools like regression, model selection, are readily available and can be combined in order to produce further
refinements.

10.6 Practical benchmarks
In this section we present several examples illustrating the wide range of applications of our tuning techniques.
Afterwards, we briefly discuss our prototype sampler generator and its implementation details.
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10.6.1 Polyomino tilings.

We start with a benchmark example of a rational specification defining n× 7 rectangular tilings using up
to 126 different tile variants (a toy example of so-called transfer matrix models, cf. [FS09, Chapter V.6,
Transfer matrix models]).

Figure 10.6: Examples of admissible tiles

We begin the construction with defining the set T of admissible tiles. Each tile t ∈ T consists of two
horizontal layers. The base layer is a single connected block of width wt 6 6. The second layer, placed on
top of the base one, is a subset (possibly empty) of wt blocks, see Figure 10.6. For presentation purposes
each tile is given a unique, distinguishable colour.

Next, we construct the asserted rational specification following the general construction method of defin-
ing a deterministic automaton with one state per each possible partial tiling configuration using the set T of
available tiles. Tracking the evolution of attainable configurations while new tiles arrive, we connect relevant
configurations by suitable transition rules in the automaton. Finally, we (partially) minimise the constructed
automaton removing states unreachable from the initial empty configuration. Once the automaton is created,
we tune the tiling sampler such that the target colour frequencies are uniform, i.e. each colour occupies, on
average, approximately 1

126 ≈ 0.7936% of the outcome tiling area. Figure 10.7 depicts an exemplary tiling
generated by our sampler.

Figure 10.7: Eight random n× 7 tilings of areas in the interval [500; 520] using in total 95 different tiles.

The automaton corresponding to our tiling sampler consists of more than 2000 states and 28, 000 tran-
sitions. We remark that this example is a notable improvement over the work of Bodini and Ponty [BP10]
who were able to sample n× 6 tilings using 7 different tiles (we handle 126) with a corresponding automaton
consisting of roughly 1500 states and 3200 transitions.
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10.6.2 Simply-generated trees with node degree constraints.

Next, we give an example of simple varieties of plane trees with fixed sets of admissible node degrees,
satisfying the general equation

y(z) = zφ(y(z)) for some polynomial φ : C→ C .

Let us consider the case of plane trees where nodes have degrees in the set D = {0, . . . , 9}, i.e. φ(y(z)) =

a0 + a1y(z) + a2y(z)
2

+ · · ·+ a9y(z)
9. Here, the numbers a0, a1, a2, . . . , a9 are non-negative real coefficients.

We tune the corresponding algebraic specification so to achieve a target frequency of 1% for all nodes of
degrees d > 2. Frequencies of nodes with degrees d 6 1 are left undistorted. For presentation purposes all
nodes with equal degree are given the same unique, distinguishable colour. Figure 10.8 depicts two exemplary
trees generated in this manner.

Figure 10.8: Two random plane trees with degrees in the set D = {0, . . . , 9}. On the left, a tree of size in
between 500 and 550; on the right, a tree of size in the interval [10 000; 10 050].

Empirical frequencies for the right tree of Figure 10.8 and a simply-generated tree of size in between
10, 000 and 10, 050 with default node degree frequencies are included in Table 10.3.

Node degree 0 1 2 3 4 5 6 7 8 9

Tuned frequency - - - - - - 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00%

Observed frequency 35.925% 56.168% 0.928% 0.898% 1.098% 0.818% 1.247% 0.938% 1.058% 0.918%

Default frequency 50.004% 24.952% 12.356% 6.322% 2.882% 1.984% 0.877% 0.378% 0.169% 0.069%

Table 10.3: Empirical frequencies of the node degree distribution.

We briefly remark that for this particular problem, Bodini, David and Marchal proposed a different,
bit-optimal sampling procedure for random trees with given partition of node degrees [BDM16].

10.6.3 Variable distribution in plain λ-terms.

To exhibit the benefits of distorting the intrinsic distribution of various structural patterns in algebraic data
types, we present an example specification defining so-called plain λ-terms with explicit control over the
distribution of de Bruijn indices.

In their nameless representation due to de Bruijn [dBru72] λ-terms are defined by the formal grammar
L ::= λL | (LL) | D where D = {0, 1, 2, . . .} is an infinite denumerable set of so-called indices (cf. [Ben+17;
GG16]). Assuming that we encode de Bruijn indices as a sequence of successors of zero (i.e. use a unary base
representation), the class L of plain λ-terms can be specified as L = ZL + ZL2 + D where D = Z Seq(Z).
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In order to control the distribution of de Bruijn indices we need a more explicit specification for de Bruijn
indices. For instance:

D = U0Z + U1Z2 + · · ·+ UkZk+1 + Zk+2 Seq(Z) .

Here, we roll out the k + 1 initial indices and assign distinct marking variables to each one of them, leaving
the remainder sequence intact. In doing so, we are in a position to construct a sampler tuned to enforce a
uniform distribution of 8% among all marked indices, i.e. indices 0, 1, . . . , 8, distorting in effect their intrinsic
geometric distribution.

Figure 10.9 illustrates two random λ-terms with such a new distribution of indices. For presentation
purposes, each index in the left picture is given a distinct colour.
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Figure 10.9: On the left, a random λ-term of size in the interval [500; 550]; on the right, a larger example
of a random λ-term of size between 10, 000 and 10, 050.

Empirical frequencies for the right term of Figure 10.9 and a plain λ-term of size in between 10, 000 and
10, 050 with default de Bruijn index frequencies are included in Table 10.4.

Index 0 1 2 3 4 5 6 7 8

Tuned frequency 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00%

Observed frequency 7.50% 7.77% 8.00% 8.23% 8.04% 7.61% 8.53% 7.43% 9.08%

Default frequency 21.91% 12.51% 5.68% 2.31% 0.74% 0.17% 0.20% 0.07% - - -

Table 10.4: Empirical frequencies (with respect to the term size) of index distribution.

Let us note that algebraic data types, an essential conceptual ingredient of various functional program-
ming languages such as Haskell or OCaml, and the random generation of their inhabitants satisfying addi-
tional structural or semantic properties is one of the central problems present in the field of property-based
software testing (see, e.g. [CH00; Pa l12]). In such an approach to software quality assurance, programmer-
declared function invariants (so-called properties) are checked using random inputs, generated accordingly to
some predetermined, though usually not rigorously controlled, distribution. In this context, our techniques
provide a novel and effective approach to generating random algebraic data types with fixed average frequen-
cies of type constructors. In particular, using our methods it is possible to boost the intrinsic frequencies of
certain desired subpatterns or diminish those which are unwanted.
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10.6.4 Weighted partitions.

Integer partitions are one of the most intensively studied objects in number theory, algebraic combinatorics
and statistical physics. Hardy and Ramanujan obtained the famous asymptotics which has later been refined
by Rademacher [FS09, Chapter VIII]. In his article [Ver96], Vershik considers several combinatorial examples
related to statistical mechanics and obtains the limit shape for a random integer partition of size n with
α
√
n parts and summands bounded by θ

√
n. Let us remark that Bernstein, Fahrbach, and Randall [BFR17]

have recently analysed the complexity of exact-size Boltzmann sampler for weighted partitions. In the model
of ideal gas, there are several particles (bosons) which form a so-called assembly of particles. The overall
energy of the system is the sum of the energies Λ =

∑N
i=1 λi where λi denotes the energy of i-th particle.

We assume that energies are positive integers. Depending on the energy level λ there are j(λ) possible
available states for each particle; the function j(λ) depends on the physical model. Since all the particles
are indistinguishable, the generating function P (z) for the number of assemblies p(Λ) with energy Λ takes
the form

P (z) =

∞∑
Λ=0

p(Λ)zΛ =
∏
λ>0

1

(1− zλ)j(λ)
. (10.6.1)

In the model of d-dimensional harmonic trap (also known as the Bose-Einstein condensation) according to
[CMZ99; HHA97; LR08] the number of states for a particle with energy λ is

(
d+λ−1
λ

)
so that each state

can be represented as a multiset with λ elements having d different colours. Accordingly, an assembly is a
multiset of particles (since they are bosons and hence indistinguishable) therefore the generating function
for the number of assemblies takes the form

P (z) = MSet(MSet>1(Z1 + · · ·+ Zd)) . (10.6.2)

It is possible to control the expected frequencies of colours using our tuning procedure and sample
resulting assemblies as Young tableaux. Each row corresponds to a particle whereas the colouring of the
row displays the multiset of included colours, see Figure 10.10. We also generated weighted partitions of
expected size 1000 (which are too large to display) with tuned frequencies of 5 colours, see Table 10.5.

(a) [5, 10, 15, 20, 25] (b) [4,4,4,4, 10, 20, 30, 40] (c) [80, 40, 20, 10, 9, 8, 7, 6, 5] (d) [20, 60, 30, 20, 10, 59]

Figure 10.10: Young tableaux corresponding to Bose–Einstein condensates with expected numbers of different
colours. Notation [c1, c2, . . . , ck] provides the expected number cj of the j-th colour, cmk is a shortcut for m
occurrences of ck.

Let us briefly explain our generation procedure. Boltzmann sampling for the outer MSet operator is
described in ??, ??. The sampling of inner MSet>1(Z1 + . . .+Zd) is more delicate. The generating function
for this multiset can be written as

MSet>1(z1 + · · ·+ zd) =

d∏
i=1

1

1− zi
− 1 . (10.6.3)
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Colour index 1 2 3 4 5 size

Tuned frequency 0.03 0.07 0.1 0.3 0.5 1000

0.03 0.08 0.07 0.33 0.49 957
0.03 0.06 0.09 0.28 0.54 1099

Observed frequency 0.03 0.08 0.09 0.34 0.46 992
0.04 0.07 0.1 0.31 0.49 932
0.04 0.09 0.1 0.25 0.52 1067

Table 10.5: Empirical frequencies of colours observed in random partition.

In order to correctly calculate the branching probabilities, we introduce slack variables s1, . . . , sd satisfying
(1+si) = (1−zi)−1. Boltzmann samplers for the newly determined combinatorial classes ΓSi are essentially
Boltzmann samplers for Seq>1(Zi). Let us note that after expanding brackets the expression becomes

MSet>1(z1 + · · · + zd) = (s1 + · · · + sd) + (s1s2 + · · · + sd−1sd) + · · · + s1s2 . . . sd.

The total number of summands is 2d − 1 where each summand corresponds to choosing some subset of
colours. Finally, let us explain how to precompute all the symmetric polynomials and efficiently handle the
branching process in quadratic time using a dynamic programming approach. We can recursively define two
arrays of real numbers pk,j and qk,j satisfying

p1,j = sj , j ∈ {1, . . . , d};
qk,d = pk,d, k ∈ {1, . . . , d};
qk,j = pk,j + qk,j+1, j ∈ {k, . . . , d− 1}, k ∈ {1, . . . , d};
pk,j = sj−k+1 · qk−1,j , j ∈ {k, . . . , d− 1}, k ∈ {2, . . . d};

(10.6.4)

Arrays (pk,j)
d
j=k contain the branching probabilities determining the next colour inside the k-th symmetric

polynomial. Arrays (qk,j)
d
j=k contain partial sums for the k-th symmetric polynomial and are required in

intermediate steps. Numbers qk,k are equal to the total values of symmetric polynomials (s1+· · ·+s2), (s1s2+
· · ·+sd−1sd), . . . , s1s2, . . . , sd and they define initial branching probabilities to choose the number of colours.

10.7 Prototype sampler generator.
Consider the following example of an input file for Boltzmann Brain:

-- Motzkin trees
Motzkin = Leaf (3)

| Unary Motzkin
| Binary Motzkin Motzkin (2) [0.3].

Here, a Motzkin algebraic data type is defined. It consists of three constructors: a constant Leaf of
weight three, a Unary constructor of weight one (default value if not explicitly annotated) and a constructor
Binary of weight two together with an explicit tuning frequency of 30%. Such a definition corresponds
to the combinatorial specification M = Z3 + ZM + UZ2M2 where the objective is to obtain the mean
proportion of UZ2M2 equal 30% of the total structure size. All the terms Leaf, Unary, Motzkin, Binary
are user-defined keywords. Given such a specification on input, bb builds a corresponding singular Boltzmann
sampler implemented in form of a self-contained Haskell module.
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[BFP10] Olivier Bodini, Éric Fusy, and Carine Pivoteau. “Random sampling of plane partitions”. In: Combina-
torics, Probability and Computing 19.2 (2010), pp. 201–226.

[BFR17] Megan Bernstein, Matthew Fahrbach, and Dana Randall. “Analyzing Boltzmann Samplers for Bose-
Einstein Condensates with Dirichlet Generating Functions”. In: arXiv preprint arXiv:1708.02266 (2017).
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[dPan16] Élie de Panafieu. “Analytic combinatorics of connected graphs”. In: Random Structures & Algorithms
(2016).
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[MZ97] Rémi Monasson and Riccardo Zecchina. “Statistical mechanics of the random K-satisfiability model”.
In: Physical Review E 56.2 (1997), p. 1357.

[NN94] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex programming.
SIAM, 1994.

[NP08] Asaf Nachmias and Yuval Peres. “Critical random graphs: Diameter and mixing time”. In: The Annals
of Probability 36.4 (2008), pp. 1267–1286.

173



[NR02] Marek Nowakowski and Haret C Rosu. “Newton’s laws of motion in the form of a Riccati equation”. In:
Physical Review E 65.4 (2002), p. 047602.

[NW78] Albert Nijenhuis and Herbert S. Wilf. Combinatorial Algorithms. 2nd ed. Academic Press, 1978.

[Odl95] Andrew M. Odlyzko. “Asymptotic enumeration methods”. In: Handbook of combinatorics 2.1063-1229
(1995), p. 1229.

[ODo+16] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. “Conic optimization via operator
splitting and homogeneous self-dual embedding”. In: J. Opt. Th. & App. 169.3 (2016), pp. 1042–1068.

[Pa l12] Micha l H. Pa lka. “Random structured test data generation for black-box testing”. PhD thesis. Chalmers
University of Technology, 2012.

[Pet16] Fedor Petrov. Analytic Combinatorics: upper bound for sum of absolute values of two complex functions:
|zf ′(z)|+ |2f(z)− zf ′(z)| 6 2f(|z|). 2016. url: http://mathoverflow.net/q/242106.
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